Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/models
/yoso
/modeling_yoso.py
# coding=utf-8 | |
# Copyright 2022 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch YOSO model.""" | |
import math | |
from pathlib import Path | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from ...activations import ACT2FN | |
from ...modeling_outputs import ( | |
BaseModelOutputWithCrossAttentions, | |
MaskedLMOutput, | |
MultipleChoiceModelOutput, | |
QuestionAnsweringModelOutput, | |
SequenceClassifierOutput, | |
TokenClassifierOutput, | |
) | |
from ...modeling_utils import PreTrainedModel | |
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer | |
from ...utils import ( | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_ninja_available, | |
is_torch_cuda_available, | |
logging, | |
) | |
from .configuration_yoso import YosoConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "uw-madison/yoso-4096" | |
_CONFIG_FOR_DOC = "YosoConfig" | |
lsh_cumulation = None | |
def load_cuda_kernels(): | |
global lsh_cumulation | |
from torch.utils.cpp_extension import load | |
def append_root(files): | |
src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "yoso" | |
return [src_folder / file for file in files] | |
src_files = append_root(["fast_lsh_cumulation_torch.cpp", "fast_lsh_cumulation.cu", "fast_lsh_cumulation_cuda.cu"]) | |
load("fast_lsh_cumulation", src_files, verbose=True) | |
import fast_lsh_cumulation as lsh_cumulation | |
def to_contiguous(input_tensors): | |
if isinstance(input_tensors, list): | |
out = [] | |
for tensor in input_tensors: | |
if not tensor.is_contiguous(): | |
tensor = tensor.contiguous() | |
out.append(tensor) | |
return out | |
else: | |
if not input_tensors.is_contiguous(): | |
input_tensors = input_tensors.contiguous() | |
return input_tensors | |
def normalize(input_tensors): | |
if isinstance(input_tensors, list): | |
out = [] | |
for tensor in input_tensors: | |
out.append(nn.functional.normalize(tensor, p=2, dim=-1)) | |
return out | |
else: | |
return nn.functional.normalize(input_tensors, p=2, dim=-1) | |
def hashing(query, key, num_hash, hash_len): | |
if len(query.size()) != 3: | |
raise ValueError("Query has incorrect size.") | |
if len(key.size()) != 3: | |
raise ValueError("Key has incorrect size.") | |
rmat = torch.randn(query.size(0), query.size(2), num_hash * hash_len, device=query.device) | |
raise_pow = 2 ** torch.arange(hash_len, device=query.device) | |
query_projection = torch.matmul(query, rmat).reshape(query.size(0), query.size(1), num_hash, hash_len) | |
key_projection = torch.matmul(key, rmat).reshape(key.size(0), key.size(1), num_hash, hash_len) | |
query_binary = (query_projection > 0).int() | |
key_binary = (key_projection > 0).int() | |
query_hash = torch.sum(query_binary * raise_pow, dim=-1) | |
query_hash = torch.sum(key_binary * raise_pow, dim=-1) | |
return query_hash.int(), query_hash.int() | |
class YosoCumulation(torch.autograd.Function): | |
def forward(ctx, query_mask, key_mask, query, key, value, config): | |
hash_code_len = config["hash_code_len"] | |
expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len | |
expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] | |
cumulation_value = torch.matmul(expectation, value) | |
ctx.save_for_backward(query_mask, key_mask, expectation, query, key, value) | |
ctx.config = config | |
return cumulation_value | |
def backward(ctx, grad): | |
grad = to_contiguous(grad) | |
query_mask, key_mask, expectation, query, key, value = ctx.saved_tensors | |
config = ctx.config | |
hash_code_len = config["hash_code_len"] | |
weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation | |
grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) | |
grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) | |
grad_value = torch.matmul(expectation.transpose(-1, -2), grad) | |
return None, None, grad_query, grad_key, grad_value, None | |
class YosoLSHCumulation(torch.autograd.Function): | |
def forward(ctx, query_mask, key_mask, query, key, value, config): | |
if query_mask.size(0) != key_mask.size(0): | |
raise ValueError("Query mask and Key mask differ in sizes in dimension 0") | |
if query_mask.size(0) != query.size(0): | |
raise ValueError("Query mask and Query differ in sizes in dimension 0") | |
if query_mask.size(0) != key.size(0): | |
raise ValueError("Query mask and Key differ in sizes in dimension 0") | |
if query_mask.size(0) != value.size(0): | |
raise ValueError("Query mask and Value mask differ in sizes in dimension 0") | |
if key.size(1) != value.size(1): | |
raise ValueError("Key and Value differ in sizes in dimension 1") | |
if query.size(2) != key.size(2): | |
raise ValueError("Query and Key differ in sizes in dimension 2") | |
query_mask, key_mask, query, key, value = to_contiguous([query_mask, key_mask, query, key, value]) | |
use_cuda = query_mask.is_cuda | |
num_hash = config["num_hash"] | |
hash_code_len = config["hash_code_len"] | |
hashtable_capacity = int(2**hash_code_len) | |
if config["use_fast_hash"]: | |
query_hash_code, key_hash_code = lsh_cumulation.fast_hash( | |
query_mask, query, key_mask, key, num_hash, hash_code_len, use_cuda, 1 | |
) | |
else: | |
query_hash_code, key_hash_code = hashing(query, key, num_hash, hash_code_len) | |
cumulation_value = lsh_cumulation.lsh_cumulation( | |
query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda, 1 | |
) | |
ctx.save_for_backward(query_mask, key_mask, query_hash_code, key_hash_code, query, key, value) | |
ctx.config = config | |
return cumulation_value | |
def backward(ctx, grad): | |
grad = to_contiguous(grad) | |
query_mask, key_mask, query_hash_code, key_hash_code, query, key, value = ctx.saved_tensors | |
config = ctx.config | |
use_cuda = grad.is_cuda | |
hash_code_len = config["hash_code_len"] | |
hashtable_capacity = int(2**hash_code_len) | |
if config["lsh_backward"]: | |
grad_value = lsh_cumulation.lsh_cumulation( | |
key_mask, key_hash_code, query_mask, query_hash_code, grad, hashtable_capacity, use_cuda, 1 | |
) | |
grad_query = lsh_cumulation.lsh_weighted_cumulation( | |
query_mask, | |
query_hash_code, | |
grad, | |
key_mask, | |
key_hash_code, | |
value, | |
(hash_code_len / 2) * key, | |
hashtable_capacity, | |
use_cuda, | |
4, | |
) | |
grad_key = lsh_cumulation.lsh_weighted_cumulation( | |
key_mask, | |
key_hash_code, | |
value, | |
query_mask, | |
query_hash_code, | |
grad, | |
(hash_code_len / 2) * query, | |
hashtable_capacity, | |
use_cuda, | |
4, | |
) | |
else: | |
expectation = (1 - torch.acos(torch.matmul(query, key.transpose(-1, -2))) / math.pi) ** hash_code_len | |
expectation = expectation * query_mask[:, :, None] * key_mask[:, None, :] | |
weighted_exp = torch.matmul(grad, value.transpose(-1, -2)) * expectation | |
grad_query = torch.matmul(weighted_exp, (hash_code_len / 2) * key) | |
grad_key = torch.matmul(weighted_exp.transpose(-1, -2), (hash_code_len / 2) * query) | |
grad_value = torch.matmul(expectation.transpose(-1, -2), grad) | |
return None, None, grad_query, grad_key, grad_value, None | |
# Copied from transformers.models.nystromformer.modeling_nystromformer.NystromformerEmbeddings | |
class YosoEmbeddings(nn.Module): | |
"""Construct the embeddings from word, position and token_type embeddings.""" | |
def __init__(self, config): | |
super().__init__() | |
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) | |
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
# any TensorFlow checkpoint file | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
# position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
self.register_buffer( | |
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2, persistent=False | |
) | |
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") | |
self.register_buffer( | |
"token_type_ids", | |
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), | |
persistent=False, | |
) | |
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): | |
if input_ids is not None: | |
input_shape = input_ids.size() | |
else: | |
input_shape = inputs_embeds.size()[:-1] | |
seq_length = input_shape[1] | |
if position_ids is None: | |
position_ids = self.position_ids[:, :seq_length] | |
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs | |
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves | |
# issue #5664 | |
if token_type_ids is None: | |
if hasattr(self, "token_type_ids"): | |
buffered_token_type_ids = self.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
if inputs_embeds is None: | |
inputs_embeds = self.word_embeddings(input_ids) | |
token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
embeddings = inputs_embeds + token_type_embeddings | |
if self.position_embedding_type == "absolute": | |
position_embeddings = self.position_embeddings(position_ids) | |
embeddings += position_embeddings | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class YosoSelfAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): | |
raise ValueError( | |
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " | |
f"heads ({config.num_attention_heads})" | |
) | |
kernel_loaded = lsh_cumulation is not None | |
if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded: | |
try: | |
load_cuda_kernels() | |
except Exception as e: | |
logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}") | |
self.num_attention_heads = config.num_attention_heads | |
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
self.all_head_size = self.num_attention_heads * self.attention_head_size | |
self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
self.position_embedding_type = ( | |
position_embedding_type if position_embedding_type is not None else config.position_embedding_type | |
) | |
self.use_expectation = config.use_expectation | |
self.hash_code_len = config.hash_code_len | |
self.use_conv = config.conv_window is not None | |
self.use_fast_hash = config.use_fast_hash | |
self.num_hash = config.num_hash | |
self.lsh_backward = config.lsh_backward | |
self.lsh_config = { | |
"hash_code_len": self.hash_code_len, | |
"use_fast_hash": self.use_fast_hash, | |
"num_hash": self.num_hash, | |
"lsh_backward": self.lsh_backward, | |
} | |
if config.conv_window is not None: | |
self.conv = nn.Conv2d( | |
in_channels=config.num_attention_heads, | |
out_channels=config.num_attention_heads, | |
kernel_size=(config.conv_window, 1), | |
padding=(config.conv_window // 2, 0), | |
bias=False, | |
groups=config.num_attention_heads, | |
) | |
def transpose_for_scores(self, layer): | |
new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
layer = layer.view(*new_layer_shape) | |
return layer.permute(0, 2, 1, 3) | |
def forward(self, hidden_states, attention_mask=None, output_attentions=False): | |
mixed_query_layer = self.query(hidden_states) | |
key_layer = self.transpose_for_scores(self.key(hidden_states)) | |
value_layer = self.transpose_for_scores(self.value(hidden_states)) | |
query_layer = self.transpose_for_scores(mixed_query_layer) | |
if self.use_conv: | |
conv_value_layer = self.conv(value_layer * attention_mask[:, None, :, None]) | |
batch_size, num_heads, seq_len, head_dim = query_layer.size() | |
query_layer = query_layer.reshape(batch_size * num_heads, seq_len, head_dim) | |
key_layer = key_layer.reshape(batch_size * num_heads, seq_len, head_dim) | |
value_layer = value_layer.reshape(batch_size * num_heads, seq_len, head_dim) | |
attention_mask = 1.0 + attention_mask / 10000.0 | |
attention_mask = ( | |
attention_mask.unsqueeze(1) | |
.repeat_interleave(num_heads, dim=1) | |
.reshape(batch_size * num_heads, seq_len) | |
.int() | |
) | |
# The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs | |
# smaller than this are padded with zeros. | |
gpu_warp_size = 32 | |
if (not self.use_expectation) and head_dim < gpu_warp_size: | |
pad_size = batch_size * num_heads, seq_len, gpu_warp_size - head_dim | |
query_layer = torch.cat( | |
[ | |
query_layer, | |
torch.zeros(pad_size, device=query_layer.device), | |
], | |
dim=-1, | |
) | |
key_layer = torch.cat( | |
[ | |
key_layer, | |
torch.zeros(pad_size, device=key_layer.device), | |
], | |
dim=-1, | |
) | |
value_layer = torch.cat( | |
[ | |
value_layer, | |
torch.zeros(pad_size, device=value_layer.device), | |
], | |
dim=-1, | |
) | |
if self.use_expectation or self.training: | |
query_layer, key_layer = normalize([query_layer, key_layer]) | |
if self.use_expectation: | |
context_layer = YosoCumulation.apply( | |
attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config | |
) | |
else: | |
context_layer = YosoLSHCumulation.apply( | |
attention_mask, attention_mask, query_layer, key_layer, value_layer, self.lsh_config | |
) | |
if (not self.use_expectation) and head_dim < gpu_warp_size: | |
context_layer = context_layer[:, :, :head_dim] | |
context_layer = normalize(context_layer) | |
context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) | |
if self.use_conv: | |
context_layer += conv_value_layer | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
context_layer = context_layer.view(*new_context_layer_shape) | |
outputs = (context_layer, context_layer) if output_attentions else (context_layer,) | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput | |
class YosoSelfOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class YosoAttention(nn.Module): | |
def __init__(self, config, position_embedding_type=None): | |
super().__init__() | |
self.self = YosoSelfAttention(config, position_embedding_type=position_embedding_type) | |
self.output = YosoSelfOutput(config) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
heads, index = find_pruneable_heads_and_indices( | |
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads | |
) | |
# Prune linear layers | |
self.self.query = prune_linear_layer(self.self.query, index) | |
self.self.key = prune_linear_layer(self.self.key, index) | |
self.self.value = prune_linear_layer(self.self.value, index) | |
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
# Update hyper params and store pruned heads | |
self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def forward(self, hidden_states, attention_mask=None, output_attentions=False): | |
self_outputs = self.self(hidden_states, attention_mask, output_attentions) | |
attention_output = self.output(self_outputs[0], hidden_states) | |
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them | |
return outputs | |
# Copied from transformers.models.bert.modeling_bert.BertIntermediate | |
class YosoIntermediate(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
if isinstance(config.hidden_act, str): | |
self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.intermediate_act_fn = config.hidden_act | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.intermediate_act_fn(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOutput | |
class YosoOutput(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
return hidden_states | |
class YosoLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.chunk_size_feed_forward = config.chunk_size_feed_forward | |
self.seq_len_dim = 1 | |
self.attention = YosoAttention(config) | |
self.add_cross_attention = config.add_cross_attention | |
self.intermediate = YosoIntermediate(config) | |
self.output = YosoOutput(config) | |
def forward(self, hidden_states, attention_mask=None, output_attentions=False): | |
self_attention_outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) | |
attention_output = self_attention_outputs[0] | |
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights | |
layer_output = apply_chunking_to_forward( | |
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output | |
) | |
outputs = (layer_output,) + outputs | |
return outputs | |
def feed_forward_chunk(self, attention_output): | |
intermediate_output = self.intermediate(attention_output) | |
layer_output = self.output(intermediate_output, attention_output) | |
return layer_output | |
class YosoEncoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.layer = nn.ModuleList([YosoLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
): | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attentions = () if output_attentions else None | |
for i, layer_module in enumerate(self.layer): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
layer_module.__call__, | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = layer_module(hidden_states, attention_mask, output_attentions) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) | |
return BaseModelOutputWithCrossAttentions( | |
last_hidden_state=hidden_states, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attentions, | |
) | |
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform | |
class YosoPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Yoso | |
class YosoLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = YosoPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def _tie_weights(self): | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Yoso | |
class YosoOnlyMLMHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = YosoLMPredictionHead(config) | |
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: | |
prediction_scores = self.predictions(sequence_output) | |
return prediction_scores | |
class YosoPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = YosoConfig | |
base_model_prefix = "yoso" | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
YOSO_START_DOCSTRING = r""" | |
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use | |
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and | |
behavior. | |
Parameters: | |
config ([`YosoConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
YOSO_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `({0})`): | |
Indices of input sequence tokens in the vocabulary. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, | |
1]`: | |
- 0 corresponds to a *sentence A* token, | |
- 1 corresponds to a *sentence B* token. | |
[What are token type IDs?](../glossary#token-type-ids) | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.max_position_embeddings - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class YosoModel(YosoPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
self.embeddings = YosoEmbeddings(config) | |
self.encoder = YosoEncoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings.word_embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings.word_embeddings = value | |
def _prune_heads(self, heads_to_prune): | |
""" | |
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
class PreTrainedModel | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.encoder.layer[layer].attention.prune_heads(heads) | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
if attention_mask is None: | |
attention_mask = torch.ones(((batch_size, seq_length)), device=device) | |
if token_type_ids is None: | |
if hasattr(self.embeddings, "token_type_ids"): | |
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] | |
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) | |
token_type_ids = buffered_token_type_ids_expanded | |
else: | |
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) | |
embedding_output = self.embeddings( | |
input_ids=input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
inputs_embeds=inputs_embeds, | |
) | |
encoder_outputs = self.encoder( | |
embedding_output, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = encoder_outputs[0] | |
if not return_dict: | |
return (sequence_output,) + encoder_outputs[1:] | |
return BaseModelOutputWithCrossAttentions( | |
last_hidden_state=sequence_output, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
cross_attentions=encoder_outputs.cross_attentions, | |
) | |
class YosoForMaskedLM(YosoPreTrainedModel): | |
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.yoso = YosoModel(config) | |
self.cls = YosoOnlyMLMHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.cls.predictions.decoder | |
def set_output_embeddings(self, new_embeddings): | |
self.cls.predictions.decoder = new_embeddings | |
self.cls.predictions.bias = new_embeddings.bias | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MaskedLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., | |
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the | |
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.yoso( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
prediction_scores = self.cls(sequence_output) | |
masked_lm_loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() # -100 index = padding token | |
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (prediction_scores,) + outputs[1:] | |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output | |
return MaskedLMOutput( | |
loss=masked_lm_loss, | |
logits=prediction_scores, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class YosoClassificationHead(nn.Module): | |
"""Head for sentence-level classification tasks.""" | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) | |
self.config = config | |
def forward(self, features, **kwargs): | |
x = features[:, 0, :] # take <s> token (equiv. to [CLS]) | |
x = self.dropout(x) | |
x = self.dense(x) | |
x = ACT2FN[self.config.hidden_act](x) | |
x = self.dropout(x) | |
x = self.out_proj(x) | |
return x | |
class YosoForSequenceClassification(YosoPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.yoso = YosoModel(config) | |
self.classifier = YosoClassificationHead(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.yoso( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(logits, labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class YosoForMultipleChoice(YosoPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.yoso = YosoModel(config) | |
self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) | |
self.classifier = nn.Linear(config.hidden_size, 1) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MultipleChoiceModelOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., | |
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See | |
`input_ids` above) | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] | |
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None | |
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
inputs_embeds = ( | |
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) | |
if inputs_embeds is not None | |
else None | |
) | |
outputs = self.yoso( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) | |
pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) | |
pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) | |
pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) | |
logits = self.classifier(pooled_output) | |
reshaped_logits = logits.view(-1, num_choices) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(reshaped_logits, labels) | |
if not return_dict: | |
output = (reshaped_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return MultipleChoiceModelOutput( | |
loss=loss, | |
logits=reshaped_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class YosoForTokenClassification(YosoPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.yoso = YosoModel(config) | |
self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
labels: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.yoso( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# Only keep active parts of the loss | |
if attention_mask is not None: | |
active_loss = attention_mask.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels) | |
active_labels = torch.where( | |
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) | |
) | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class YosoForQuestionAnswering(YosoPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
config.num_labels = 2 | |
self.num_labels = config.num_labels | |
self.yoso = YosoModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
token_type_ids: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
start_positions: Optional[torch.Tensor] = None, | |
end_positions: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
r""" | |
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
are not taken into account for computing the loss. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.yoso( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
logits = self.qa_outputs(sequence_output) | |
start_logits, end_logits = logits.split(1, dim=-1) | |
start_logits = start_logits.squeeze(-1) | |
end_logits = end_logits.squeeze(-1) | |
total_loss = None | |
if start_positions is not None and end_positions is not None: | |
# If we are on multi-GPU, split add a dimension | |
if len(start_positions.size()) > 1: | |
start_positions = start_positions.squeeze(-1) | |
if len(end_positions.size()) > 1: | |
end_positions = end_positions.squeeze(-1) | |
# sometimes the start/end positions are outside our model inputs, we ignore these terms | |
ignored_index = start_logits.size(1) | |
start_positions = start_positions.clamp(0, ignored_index) | |
end_positions = end_positions.clamp(0, ignored_index) | |
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
start_loss = loss_fct(start_logits, start_positions) | |
end_loss = loss_fct(end_logits, end_positions) | |
total_loss = (start_loss + end_loss) / 2 | |
if not return_dict: | |
output = (start_logits, end_logits) + outputs[1:] | |
return ((total_loss,) + output) if total_loss is not None else output | |
return QuestionAnsweringModelOutput( | |
loss=total_loss, | |
start_logits=start_logits, | |
end_logits=end_logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |