Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/pipelines
/image_feature_extraction.py
from typing import Dict | |
from ..utils import add_end_docstrings, is_vision_available | |
from .base import GenericTensor, Pipeline, build_pipeline_init_args | |
if is_vision_available(): | |
from ..image_utils import load_image | |
class ImageFeatureExtractionPipeline(Pipeline): | |
""" | |
Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base | |
transformer, which can be used as features in downstream tasks. | |
Example: | |
```python | |
>>> from transformers import pipeline | |
>>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction") | |
>>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True) | |
>>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image. | |
torch.Size([1, 197, 768]) | |
``` | |
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) | |
This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: | |
`"image-feature-extraction"`. | |
All vision models may be used for this pipeline. See a list of all models, including community-contributed models on | |
[huggingface.co/models](https://huggingface.co/models). | |
""" | |
def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs): | |
preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs | |
postprocess_params = {} | |
if pool is not None: | |
postprocess_params["pool"] = pool | |
if return_tensors is not None: | |
postprocess_params["return_tensors"] = return_tensors | |
if "timeout" in kwargs: | |
preprocess_params["timeout"] = kwargs["timeout"] | |
return preprocess_params, {}, postprocess_params | |
def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]: | |
image = load_image(image, timeout=timeout) | |
model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs) | |
if self.framework == "pt": | |
model_inputs = model_inputs.to(self.torch_dtype) | |
return model_inputs | |
def _forward(self, model_inputs): | |
model_outputs = self.model(**model_inputs) | |
return model_outputs | |
def postprocess(self, model_outputs, pool=None, return_tensors=False): | |
pool = pool if pool is not None else False | |
if pool: | |
if "pooler_output" not in model_outputs: | |
raise ValueError( | |
"No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option." | |
) | |
outputs = model_outputs["pooler_output"] | |
else: | |
# [0] is the first available tensor, logits or last_hidden_state. | |
outputs = model_outputs[0] | |
if return_tensors: | |
return outputs | |
if self.framework == "pt": | |
return outputs.tolist() | |
elif self.framework == "tf": | |
return outputs.numpy().tolist() | |
def __call__(self, *args, **kwargs): | |
""" | |
Extract the features of the input(s). | |
Args: | |
images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): | |
The pipeline handles three types of images: | |
- A string containing a http link pointing to an image | |
- A string containing a local path to an image | |
- An image loaded in PIL directly | |
The pipeline accepts either a single image or a batch of images, which must then be passed as a string. | |
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL | |
images. | |
timeout (`float`, *optional*, defaults to None): | |
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and | |
the call may block forever. | |
Return: | |
A nested list of `float`: The features computed by the model. | |
""" | |
return super().__call__(*args, **kwargs) | |