Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/quantizers
/quantizer_aqlm.py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
from typing import TYPE_CHECKING, Optional | |
from packaging import version | |
from .base import HfQuantizer | |
if TYPE_CHECKING: | |
from ..modeling_utils import PreTrainedModel | |
from ..integrations import replace_with_aqlm_linear | |
from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available, logging | |
from ..utils.quantization_config import QuantizationConfigMixin | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class AqlmHfQuantizer(HfQuantizer): | |
""" | |
Quantizer of the AQLM method. Enables the loading of prequantized models. | |
""" | |
requires_calibration = True | |
required_packages = ["aqlm"] | |
optimum_quantizer = None | |
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
self.quantization_config = quantization_config | |
def validate_environment(self, *args, **kwargs): | |
if not is_accelerate_available(): | |
raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`") | |
if not is_aqlm_available(): | |
raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`") | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
if torch_dtype is None: | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
logger.info( | |
"CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually." | |
) | |
else: | |
torch_dtype = torch.float32 | |
logger.info( | |
"CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually." | |
) | |
return torch_dtype | |
def _process_model_before_weight_loading( | |
self, | |
model: "PreTrainedModel", | |
**kwargs, | |
): | |
replace_with_aqlm_linear( | |
model, | |
quantization_config=self.quantization_config, | |
linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize, | |
) | |
model.config.quantization_config = self.quantization_config | |
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): | |
return model | |
def is_trainable(self, model: Optional["PreTrainedModel"] = None): | |
aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2") | |
if aqlm_supports_training: | |
return True | |
else: | |
logger.warning( | |
f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`" | |
) | |
return False | |
def is_serializable(self): | |
return True | |