Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/quantizers
/quantizer_awq.py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib.metadata | |
from typing import TYPE_CHECKING | |
from packaging import version | |
from .base import HfQuantizer | |
if TYPE_CHECKING: | |
from ..modeling_utils import PreTrainedModel | |
from ..utils import is_accelerate_available, is_auto_awq_available, is_torch_available, logging | |
from ..utils.quantization_config import AWQLinearVersion | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class AwqQuantizer(HfQuantizer): | |
""" | |
4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978) | |
""" | |
# AWQ requires data callibration - we support only inference | |
requires_calibration = True | |
required_packages = ["awq", "accelerate"] | |
def __init__(self, quantization_config, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
def validate_environment(self, device_map, **kwargs): | |
if not torch.cuda.is_available(): | |
raise RuntimeError("GPU is required to run AWQ quantized model.") | |
if not is_auto_awq_available(): | |
raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)") | |
if not is_accelerate_available(): | |
raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)") | |
if device_map is None: | |
logger.warning_once( | |
"You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set " | |
"your model on a GPU device in order to run your model." | |
) | |
elif device_map is not None: | |
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): | |
raise ValueError( | |
"You are attempting to load an AWQ model with a device_map that contains a CPU or disk device." | |
" This is not supported. Please remove the CPU or disk device from the device_map." | |
) | |
def update_torch_dtype(self, torch_dtype): | |
if torch_dtype is None: | |
torch_dtype = torch.float16 | |
elif torch_dtype != torch.float16: | |
logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.") | |
return torch_dtype | |
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): | |
from ..integrations import get_keys_to_not_convert, replace_quantization_scales, replace_with_awq_linear | |
self.modules_to_not_convert = get_keys_to_not_convert(model) | |
if self.quantization_config.modules_to_not_convert is not None: | |
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) | |
model, has_been_replaced = replace_with_awq_linear( | |
model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert | |
) | |
model = replace_quantization_scales(model, model.config.model_type) | |
if not has_been_replaced: | |
logger.warning( | |
"You are loading an AWQ model but no linear modules were found in your model." | |
" Please double check your model architecture, or submit an issue on github if you think this is a bug." | |
) | |
def _process_model_after_weight_loading(self, model): | |
if self.quantization_config.do_fuse: | |
from ..integrations import fuse_awq_modules | |
model = fuse_awq_modules(model, self.quantization_config) | |
model._awq_is_fused = True # TODO: consider storing this flag in model.config instead | |
if self.quantization_config.version == AWQLinearVersion.EXLLAMA: | |
from ..integrations import post_init_awq_exllama_modules | |
model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) | |
def is_serializable(self): | |
# AWQ through auto-awq has been always serializable, except if the model is fused. | |
if self.quantization_config.do_fuse: | |
logger.warning("You cannot save an AWQ model that uses fused modules!") | |
return False | |
if self.quantization_config.version == AWQLinearVersion.EXLLAMA: | |
logger.warning("You cannot save an AWQ model that uses Exllama backend!") | |
return False | |
return True | |
def is_trainable(self): | |
# AWQ supports PEFT fine-tuning from version 0.2.0 | |
MIN_AWQ_VERSION_FOR_PEFT = "0.2.0" | |
return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT) | |