mbuali's picture
Upload folder using huggingface_hub
d1ceb73 verified
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
from packaging import version
from .base import HfQuantizer
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging
from .quantizers_utils import get_module_from_name
if is_torch_available():
import torch
from ..pytorch_utils import Conv1D
logger = logging.get_logger(__name__)
class Bnb8BitHfQuantizer(HfQuantizer):
"""
8-bit quantization from bitsandbytes quantization method:
before loading: converts transformer layers into Linear8bitLt during loading: load 16bit weight and pass to the
layer object after: quantizes individual weights in Linear8bitLt into 8bit at fitst .cuda() call
saving:
from state dict, as usual; saves weights and 'SCB' component
loading:
need to locate SCB component and pass to the Linear8bitLt object
"""
use_keep_in_fp32_modules = True
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["bitsandbytes", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
if self.quantization_config.llm_int8_skip_modules is not None:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
def validate_environment(self, *args, **kwargs):
if not torch.cuda.is_available():
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
if not is_accelerate_available():
raise ImportError("Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install accelerate`")
if not is_bitsandbytes_available():
raise ImportError(
"Using `bitsandbytes` 8-bit quantization requires the latest version of bitsandbytes: `pip install -U bitsandbytes`"
)
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
device_map = kwargs.get("device_map", None)
if (
device_map is not None
and isinstance(device_map, dict)
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
):
device_map_without_lm_head = {
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
}
if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
raise ValueError(
"Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the "
"quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules "
"in 32-bit, you need to set `load_in_8bit_fp32_cpu_offload=True` and pass a custom `device_map` to "
"`from_pretrained`. Check "
"https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu "
"for more details. "
)
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.2"):
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 8bit inference and training"
" make sure you have the latest version of `bitsandbytes` installed"
)
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
# need more space for buffers that are created during quantization
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
logger.info(
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
" torch_dtype=torch.float16 to remove this warning.",
torch_dtype,
)
torch_dtype = torch.float16
return torch_dtype
def update_device_map(self, device_map):
if device_map is None:
device_map = {"": torch.cuda.current_device()}
logger.info(
"The device_map was not initialized. "
"Setting device_map to {'':torch.cuda.current_device()}. "
"If you want to use the model for inference, please set device_map ='auto' "
)
return device_map
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if target_dtype != torch.int8:
logger.info("target_dtype {target_dtype} is replaced by `torch.int8` for 8-bit BnB quantization")
return torch.int8
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
):
import bitsandbytes as bnb
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Int8Params):
if self.pre_quantized:
if param_name.replace("weight", "SCB") not in state_dict.keys():
raise ValueError("Missing quantization component `SCB`")
if param_value.dtype != torch.int8:
raise ValueError(
f"Incompatible dtype `{param_value.dtype}` when loading 8-bit prequantized weight. Expected `torch.int8`."
)
return True
return False
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: Optional[List[str]] = None,
):
"""
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
needs aux items from state dicts, if found - removes them from unexpected_keys
"""
import bitsandbytes as bnb
fp16_statistics_key = param_name.replace("weight", "SCB")
fp16_weights_format_key = param_name.replace("weight", "weight_format")
fp16_statistics = state_dict.get(fp16_statistics_key, None)
fp16_weights_format = state_dict.get(fp16_weights_format_key, None)
module, tensor_name = get_module_from_name(model, param_name)
if tensor_name not in module._parameters:
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
old_value = getattr(module, tensor_name)
if not isinstance(module._parameters[tensor_name], bnb.nn.Int8Params):
raise ValueError(f"Parameter `{tensor_name}` should only be a `bnb.nn.Int8Params` instance.")
if (
old_value.device == torch.device("meta")
and target_device not in ["meta", torch.device("meta")]
and param_value is None
):
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
new_value = param_value.to("cpu")
if self.pre_quantized and not self.is_serializable:
raise ValueError(
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
)
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls, Conv1D):
if fp16_statistics is None:
new_value = new_value.T
kwargs = old_value.__dict__
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(target_device)
module._parameters[tensor_name] = new_value
if fp16_statistics is not None:
setattr(module.weight, "SCB", fp16_statistics.to(target_device))
if unexpected_keys is not None:
unexpected_keys.remove(fp16_statistics_key)
# We just need to pop the `weight_format` keys from the state dict to remove unneeded
# messages. The correct format is correctly retrieved during the first forward pass.
if fp16_weights_format is not None and unexpected_keys is not None:
unexpected_keys.remove(fp16_weights_format_key)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model.is_loaded_in_8bit = True
model.is_8bit_serializable = self.is_serializable
return model
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if self.quantization_config.llm_int8_skip_modules is None:
self.modules_to_not_convert = get_keys_to_not_convert(model)
else:
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
raise ValueError(
"If you want to offload some keys to `cpu` or `disk`, you need to set "
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
" converted to 8-bit but kept in 32-bit."
)
self.modules_to_not_convert.extend(keys_on_cpu)
model = replace_with_bnb_linear(
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
)
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
model.config.quantization_config = self.quantization_config
@property
def is_serializable(self):
_bnb_supports_8bit_serialization = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse(
"0.37.2"
)
if not _bnb_supports_8bit_serialization:
logger.warning(
"You are calling `save_pretrained` to a 8-bit converted model, but your `bitsandbytes` version doesn't support it. "
"If you want to save 8-bit models, make sure to have `bitsandbytes>0.37.2` installed. You will most likely face errors or"
" unexpected behaviours."
)
return False
return True
@property
def is_trainable(self) -> bool:
return version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.37.0")
def _dequantize(self, model):
from ..integrations import dequantize_and_replace
model = dequantize_and_replace(
model, self.modules_to_not_convert, quantization_config=self.quantization_config
)
return model