Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/quantizers
/quantizer_eetq.py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional | |
from .base import HfQuantizer | |
if TYPE_CHECKING: | |
from ..modeling_utils import PreTrainedModel | |
from ..utils import is_accelerate_available, is_eetq_available, is_torch_available, logging | |
from .quantizers_utils import get_module_from_name | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class EetqHfQuantizer(HfQuantizer): | |
""" | |
8-bit quantization from EETQ quantization method: | |
before loading: converts transformer layers into W8A16Linear during loading: load 16bit weight and pass to the | |
layer object after: quantizes individual weights in Linear8bitLt into 8bit at first .cuda() call | |
""" | |
requires_parameters_quantization = True | |
requires_calibration = False | |
required_packages = ["eetq", "accelerate"] | |
def __init__(self, quantization_config, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
self.quantization_config = quantization_config | |
def validate_environment(self, *args, **kwargs): | |
if not is_eetq_available(): | |
raise ImportError( | |
"Using `eetq` 8-bit quantization requires eetq." | |
"Please install the latest version of eetq from : https://github.com/NetEase-FuXi/EETQ" | |
) | |
if not is_accelerate_available(): | |
raise ImportError("Loading an EETQ quantized model requires accelerate (`pip install accelerate`)") | |
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): | |
raise ValueError( | |
"Converting into 8-bit weights from tf/flax weights is currently not supported, please make" | |
" sure the weights are in PyTorch format." | |
) | |
if not torch.cuda.is_available(): | |
raise RuntimeError("No GPU found. A GPU is needed for quantization.") | |
device_map = kwargs.get("device_map", None) | |
if device_map is None: | |
logger.warning_once( | |
"You have loaded an EETQ model on CPU and have a CUDA device available, make sure to set " | |
"your model on a GPU device in order to run your model." | |
) | |
elif device_map is not None: | |
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): | |
raise ValueError( | |
"You are attempting to load an EETQ model with a device_map that contains a CPU or disk device." | |
" This is not supported. Please remove the CPU or disk device from the device_map." | |
) | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
if torch_dtype is None: | |
torch_dtype = torch.float16 | |
logger.info( | |
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to " | |
"requirements of `eetq` to enable model loading in 8-bit. " | |
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass" | |
" torch_dtype=torch.float16 to remove this warning.", | |
torch_dtype, | |
) | |
elif torch_dtype != torch.float16: | |
logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with EETQ.") | |
return torch_dtype | |
def check_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
): | |
from eetq import EetqLinear | |
module, tensor_name = get_module_from_name(model, param_name) | |
if isinstance(module, EetqLinear): | |
if self.pre_quantized or tensor_name == "bias": | |
if tensor_name == "weight" and param_value.dtype != torch.int8: | |
raise ValueError("Expect quantized weights but got an unquantized weight") | |
return False | |
else: | |
if tensor_name == "weight_scale": | |
raise ValueError("Expect unquantized weights but got a quantized weight_scale") | |
return True | |
return False | |
def create_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
target_device: "torch.device", | |
state_dict: Dict[str, Any], | |
unexpected_keys: Optional[List[str]] = None, | |
): | |
""" | |
quantizes weights into qweight and weight_scales | |
""" | |
from eetq import quantize_and_preprocess_weights | |
module, tensor_name = get_module_from_name(model, param_name) | |
new_value, weight_scale = quantize_and_preprocess_weights(param_value) | |
module._buffers[tensor_name] = new_value.to(target_device) | |
module.register("weight_scales", weight_scale.to(target_device)) | |
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): | |
return model | |
def _process_model_before_weight_loading( | |
self, | |
model: "PreTrainedModel", | |
device_map, | |
keep_in_fp32_modules: List[str] = [], | |
**kwargs, | |
): | |
from ..integrations import get_keys_to_not_convert, replace_with_eetq_linear | |
self.modules_to_not_convert = get_keys_to_not_convert(model) | |
if self.quantization_config.modules_to_not_convert is not None: | |
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) | |
model = replace_with_eetq_linear( | |
model, | |
modules_to_not_convert=self.modules_to_not_convert, | |
quantization_config=self.quantization_config, | |
pre_quantized=self.pre_quantized, | |
) | |
model.config.quantization_config = self.quantization_config | |
def is_serializable(self): | |
return True | |
def is_trainable(self) -> bool: | |
return True | |