Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/quantizers
/quantizer_gptq.py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
from typing import TYPE_CHECKING, Optional | |
from packaging import version | |
from .base import HfQuantizer | |
if TYPE_CHECKING: | |
from ..modeling_utils import PreTrainedModel | |
from ..utils import is_auto_gptq_available, is_optimum_available, is_torch_available, logging | |
from ..utils.quantization_config import GPTQConfig, QuantizationConfigMixin | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class GptqHfQuantizer(HfQuantizer): | |
""" | |
Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through | |
`auto_gptq` package. Quantization is done under the hood for users if they load a non-prequantized model. | |
""" | |
requires_calibration = False | |
required_packages = ["optimum", "auto_gptq"] | |
optimum_quantizer = None | |
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
from optimum.gptq import GPTQQuantizer | |
self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum()) | |
def validate_environment(self, *args, **kwargs): | |
gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2") | |
if not gptq_supports_cpu and not torch.cuda.is_available(): | |
raise RuntimeError("GPU is required to quantize or run quantize model.") | |
elif not (is_optimum_available() and is_auto_gptq_available()): | |
raise ImportError( | |
"Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)" | |
) | |
elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"): | |
raise ImportError( | |
"You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`" | |
) | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
if torch_dtype is None: | |
torch_dtype = torch.float16 | |
elif torch_dtype != torch.float16: | |
logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.") | |
return torch_dtype | |
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): | |
if model.__class__.main_input_name != "input_ids": | |
raise RuntimeError("We can only quantize pure text model.") | |
if self.pre_quantized: | |
model = self.optimum_quantizer.convert_model(model) | |
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): | |
if self.pre_quantized: | |
model = self.optimum_quantizer.post_init_model(model) | |
else: | |
if self.quantization_config.tokenizer is None: | |
self.quantization_config.tokenizer = model.name_or_path | |
self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer) | |
model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict()) | |
def is_trainable(self, model: Optional["PreTrainedModel"] = None): | |
return True | |
def is_serializable(self): | |
return True | |