Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/quantizers
/quantizer_hqq.py
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Any, Dict, List | |
from ..integrations import prepare_for_hqq_linear | |
from ..utils import is_accelerate_available, is_hqq_available, is_torch_available, logging | |
from .base import HfQuantizer | |
from .quantizers_utils import get_module_from_name | |
if TYPE_CHECKING: | |
from ..modeling_utils import PreTrainedModel | |
if is_accelerate_available(): | |
from accelerate.hooks import remove_hook_from_module | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
# Finds the parent of a node module named "name" | |
def find_parent(model, name): | |
module_tree = name.split(".")[:-1] | |
parent = model | |
for m in module_tree: | |
parent = parent._modules[m] | |
return parent | |
class HqqHfQuantizer(HfQuantizer): | |
""" | |
HQQ quantizer base HF class. | |
nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading(). | |
The actual quantization and offloading to the GPU is done in check_quantized_param(). | |
""" | |
use_keep_in_fp32_modules = False | |
requires_parameters_quantization = True | |
requires_calibration = False | |
required_packages = ["hqq"] | |
def __init__(self, quantization_config, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
self.torch_dtype = None | |
self.using_multi_gpu = False | |
def validate_environment(self, *args, **kwargs): | |
if not (is_hqq_available()): | |
raise ImportError( | |
"HQQ is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`" | |
) | |
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): | |
raise ValueError( | |
"Converting weights from tf/flax weights is currently not supported, please make" | |
" sure the weights are in PyTorch format." | |
) | |
if not torch.cuda.is_available(): | |
raise RuntimeError("No GPU found. A GPU is needed for quantization.") | |
if self.torch_dtype is None: | |
if "torch_dtype" in kwargs: | |
self.torch_dtype = kwargs["torch_dtype"] | |
else: | |
self.torch_dtype = torch.float32 | |
logger.info("Setting torch_dtype to torch.float32 as the default value since it was not specified.") | |
device_map = kwargs.get("device_map", None) | |
if isinstance(device_map, dict): | |
if "cpu" in device_map.values() or "disk" in device_map.values(): | |
raise ValueError( | |
"You are attempting to use an HQQ model with a device_map that contains a CPU or disk device." | |
" This is not supported. Please remove the CPU or disk device from the device_map." | |
) | |
else: | |
self.using_multi_gpu = len(set(device_map.values())) > 1 | |
def check_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
) -> bool: | |
module, tensor_name = get_module_from_name(model, param_name) | |
return isinstance(module, torch.nn.Linear) and (tensor_name == "weight") | |
def create_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
target_device: "torch.device", | |
state_dict: Dict[str, Any], | |
unexpected_keys: List[str], | |
): | |
""" | |
Each nn.Linear layer is processsed here. | |
We first check if the corresponding module state_dict contains already HQQ quantized parameters. | |
If not, we create a temp linear layer with the module state_dict params and use it for quantization | |
""" | |
if is_hqq_available(): | |
from hqq.core.quantize import HQQLinear | |
module, tensor_name = get_module_from_name(model, param_name) | |
layer_name = param_name.replace(".weight", "").replace(".bias", "") | |
parent_module = find_parent(model, layer_name) | |
node = layer_name.split(".")[-1] | |
# Step 0: set module state_dict | |
module_state_dict = {key.split(".")[-1]: state_dict[key] for key in state_dict if layer_name in key} | |
# Step 1: populate module with weight/bias from module state dict | |
for key in module_state_dict: | |
setattr(module, key, torch.nn.Parameter(module_state_dict[key])) | |
# Step 2: Replace module with either HQQLinear or move it to device. We do this via setattr on the parent as doing on it on the module | |
# directly doesn't work. | |
if hasattr(module, "quant_config"): | |
hqq_layer = HQQLinear( | |
module, | |
module.quant_config, | |
compute_dtype=self.torch_dtype, | |
device=target_device, | |
del_orig=True, | |
) | |
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor): | |
hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias) | |
if self.using_multi_gpu: | |
hqq_layer = self._patch_layer_for_multigpu(hqq_layer) | |
setattr(parent_module, node, hqq_layer) | |
else: | |
module = module.to(dtype=self.torch_dtype, device=target_device) | |
setattr(parent_module, node, module) | |
torch.cuda.empty_cache() | |
# Remove accelerate hook and uses a simpler forward pass. Otherwise, this breaks with multi-gpu | |
def _patch_layer_for_multigpu(self, hqq_layer): | |
hqq_layer = remove_hook_from_module(hqq_layer) | |
def forward_with_device(self, x): | |
out = torch.matmul(x.to(self.device), self.dequantize().t()) | |
if self.bias is not None: | |
out += self.bias | |
return out | |
hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x) | |
return hqq_layer | |
def _process_model_before_weight_loading( | |
self, | |
model: "PreTrainedModel", | |
device_map, | |
keep_in_fp32_modules: List[str] = None, | |
**kwargs, | |
): | |
keep_in_fp32_modules = keep_in_fp32_modules if keep_in_fp32_modules is not None else [] | |
# Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param(). | |
# prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config) | |
model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config) | |
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): | |
model.is_hqq_quantized = True | |
model.is_hqq_serializable = self.is_serializable | |
return model | |
def is_serializable(self): | |
return False | |
def is_trainable(self) -> bool: | |
return True | |