mbuali's picture
Upload folder using huggingface_hub
d1ceb73 verified
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Dict, List
from ..integrations import prepare_for_hqq_linear
from ..utils import is_accelerate_available, is_hqq_available, is_torch_available, logging
from .base import HfQuantizer
from .quantizers_utils import get_module_from_name
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
if is_accelerate_available():
from accelerate.hooks import remove_hook_from_module
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
# Finds the parent of a node module named "name"
def find_parent(model, name):
module_tree = name.split(".")[:-1]
parent = model
for m in module_tree:
parent = parent._modules[m]
return parent
class HqqHfQuantizer(HfQuantizer):
"""
HQQ quantizer base HF class.
nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading().
The actual quantization and offloading to the GPU is done in check_quantized_param().
"""
use_keep_in_fp32_modules = False
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["hqq"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.torch_dtype = None
self.using_multi_gpu = False
def validate_environment(self, *args, **kwargs):
if not (is_hqq_available()):
raise ImportError(
"HQQ is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`"
)
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
if not torch.cuda.is_available():
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
if self.torch_dtype is None:
if "torch_dtype" in kwargs:
self.torch_dtype = kwargs["torch_dtype"]
else:
self.torch_dtype = torch.float32
logger.info("Setting torch_dtype to torch.float32 as the default value since it was not specified.")
device_map = kwargs.get("device_map", None)
if isinstance(device_map, dict):
if "cpu" in device_map.values() or "disk" in device_map.values():
raise ValueError(
"You are attempting to use an HQQ model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
else:
self.using_multi_gpu = len(set(device_map.values())) > 1
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
module, tensor_name = get_module_from_name(model, param_name)
return isinstance(module, torch.nn.Linear) and (tensor_name == "weight")
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: List[str],
):
"""
Each nn.Linear layer is processsed here.
We first check if the corresponding module state_dict contains already HQQ quantized parameters.
If not, we create a temp linear layer with the module state_dict params and use it for quantization
"""
if is_hqq_available():
from hqq.core.quantize import HQQLinear
module, tensor_name = get_module_from_name(model, param_name)
layer_name = param_name.replace(".weight", "").replace(".bias", "")
parent_module = find_parent(model, layer_name)
node = layer_name.split(".")[-1]
# Step 0: set module state_dict
module_state_dict = {key.split(".")[-1]: state_dict[key] for key in state_dict if layer_name in key}
# Step 1: populate module with weight/bias from module state dict
for key in module_state_dict:
setattr(module, key, torch.nn.Parameter(module_state_dict[key]))
# Step 2: Replace module with either HQQLinear or move it to device. We do this via setattr on the parent as doing on it on the module
# directly doesn't work.
if hasattr(module, "quant_config"):
hqq_layer = HQQLinear(
module,
module.quant_config,
compute_dtype=self.torch_dtype,
device=target_device,
del_orig=True,
)
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
if self.using_multi_gpu:
hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
setattr(parent_module, node, hqq_layer)
else:
module = module.to(dtype=self.torch_dtype, device=target_device)
setattr(parent_module, node, module)
torch.cuda.empty_cache()
# Remove accelerate hook and uses a simpler forward pass. Otherwise, this breaks with multi-gpu
def _patch_layer_for_multigpu(self, hqq_layer):
hqq_layer = remove_hook_from_module(hqq_layer)
def forward_with_device(self, x):
out = torch.matmul(x.to(self.device), self.dequantize().t())
if self.bias is not None:
out += self.bias
return out
hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x)
return hqq_layer
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = None,
**kwargs,
):
keep_in_fp32_modules = keep_in_fp32_modules if keep_in_fp32_modules is not None else []
# Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param().
# prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config)
model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model.is_hqq_quantized = True
model.is_hqq_serializable = self.is_serializable
return model
@property
def is_serializable(self):
return False
@property
def is_trainable(self) -> bool:
return True