Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/quantizers
/quantizer_quanto.py
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union | |
from packaging import version | |
from .base import HfQuantizer | |
from .quantizers_utils import get_module_from_name | |
if TYPE_CHECKING: | |
from ..modeling_utils import PreTrainedModel | |
from ..utils import is_accelerate_available, is_quanto_available, is_torch_available, logging | |
from ..utils.quantization_config import QuantoConfig | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class QuantoHfQuantizer(HfQuantizer): | |
""" | |
Quantizer for the quanto library | |
""" | |
required_packages = ["quanto", "accelerate"] | |
requires_parameters_quantization = True | |
requires_calibration = False | |
def __init__(self, quantization_config: QuantoConfig, **kwargs): | |
super().__init__(quantization_config, **kwargs) | |
self.post_init() | |
def post_init(self): | |
r""" | |
Safety checker | |
""" | |
if self.quantization_config.activations is not None and not self.pre_quantized: | |
raise ValueError( | |
"We don't support quantizing the activations with transformers library." | |
"Use quanto library for more complex use cases such as activations quantization, calibration and quantization aware training." | |
) | |
def validate_environment(self, *args, **kwargs): | |
if not is_quanto_available(): | |
raise ImportError("Loading a quanto quantized model requires quanto library (`pip install quanto`)") | |
if not is_accelerate_available(): | |
raise ImportError( | |
"Loading a quanto quantized model requires accelerate library (`pip install accelerate`)" | |
) | |
def update_device_map(self, device_map): | |
if device_map is None: | |
device_map = {"": "cpu"} | |
logger.info( | |
"The device_map was not initialized. " | |
"Setting device_map to {'':'cpu'}. " | |
"If you want to use the model for inference, please set device_map ='auto'" | |
) | |
return device_map | |
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": | |
if torch_dtype is None: | |
logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.") | |
torch_dtype = torch.float32 | |
return torch_dtype | |
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: | |
import quanto | |
not_missing_keys = [] | |
for name, module in model.named_modules(): | |
if isinstance(module, quanto.QModuleMixin): | |
for missing in missing_keys: | |
if ( | |
(name in missing or name in f"{prefix}.{missing}") | |
and not missing.endswith(".weight") | |
and not missing.endswith(".bias") | |
): | |
not_missing_keys.append(missing) | |
return [k for k in missing_keys if k not in not_missing_keys] | |
def check_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
state_dict: Dict[str, Any], | |
**kwargs, | |
) -> bool: | |
""" | |
Check if a parameter needs to be quantized. | |
""" | |
import quanto | |
device_map = kwargs.get("device_map", None) | |
param_device = kwargs.get("param_device", None) | |
# we don't quantize the model if the module is going to be offloaded to the cpu | |
if device_map is not None and param_device is not None: | |
device_map_values = set(device_map.values()) | |
if param_device == "cpu" and len(device_map_values) > 1: | |
if not (device_map_values == {"cpu"} or device_map_values == {"cpu", "disk"}): | |
return False | |
module, tensor_name = get_module_from_name(model, param_name) | |
# We only quantize the weights and the bias is not quantized. | |
if isinstance(module, quanto.QModuleMixin) and "weight" in tensor_name: | |
# if the weights are quantized, don't need to recreate it again with `create_quantized_param` | |
return not module.frozen | |
else: | |
return False | |
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: | |
max_memory = {key: val * 0.90 for key, val in max_memory.items()} | |
return max_memory | |
def create_quantized_param( | |
self, | |
model: "PreTrainedModel", | |
param_value: "torch.Tensor", | |
param_name: str, | |
target_device: "torch.device", | |
*args, | |
**kwargs, | |
): | |
""" | |
Create the quantized parameter by calling .freeze() after setting it to the module. | |
""" | |
from accelerate.utils import set_module_tensor_to_device | |
set_module_tensor_to_device(model, param_name, target_device, param_value) | |
module, _ = get_module_from_name(model, param_name) | |
module.freeze() | |
module.weight.requires_grad = False | |
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": | |
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.27.0"): | |
from accelerate.utils import CustomDtype | |
mapping = { | |
"int8": torch.int8, | |
"float8": CustomDtype.FP8, | |
"int4": CustomDtype.INT4, | |
"int2": CustomDtype.INT2, | |
} | |
target_dtype = mapping[self.quantization_config.weights] | |
return target_dtype | |
else: | |
raise ValueError( | |
"You are using `device_map='auto'` on a quanto quantized model. To automatically compute" | |
" the appropriate device map, you should upgrade your `accelerate` library," | |
"`pip install --upgrade accelerate` or install it from source." | |
) | |
def _process_model_before_weight_loading( | |
self, model: "PreTrainedModel", keep_in_fp32_modules: List[str] = [], **kwargs | |
): | |
from ..integrations import get_keys_to_not_convert, replace_with_quanto_layers | |
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons | |
if self.quantization_config.modules_to_not_convert is None: | |
self.modules_to_not_convert = get_keys_to_not_convert(model) | |
else: | |
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert | |
if not isinstance(self.modules_to_not_convert, list): | |
self.modules_to_not_convert = [self.modules_to_not_convert] | |
self.modules_to_not_convert.extend(keep_in_fp32_modules) | |
model, _ = replace_with_quanto_layers( | |
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config | |
) | |
model.config.quantization_config = self.quantization_config | |
def _process_model_after_weight_loading(self, model): | |
return model | |
def is_trainable(self, model: Optional["PreTrainedModel"] = None): | |
return False | |
def is_serializable(self): | |
return False | |