Llama-3.1-8B-DALv0.1
/
venv
/lib
/python3.12
/site-packages
/transformers
/utils
/quantization_config.py
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import importlib.metadata | |
import json | |
import os | |
from dataclasses import dataclass | |
from enum import Enum | |
from typing import Any, Dict, List, Optional, Union | |
from packaging import version | |
from ..utils import is_auto_awq_available, is_hqq_available, is_torch_available, logging | |
if is_torch_available(): | |
import torch | |
logger = logging.get_logger(__name__) | |
class QuantizationMethod(str, Enum): | |
BITS_AND_BYTES = "bitsandbytes" | |
GPTQ = "gptq" | |
AWQ = "awq" | |
AQLM = "aqlm" | |
QUANTO = "quanto" | |
EETQ = "eetq" | |
HQQ = "hqq" | |
FBGEMM_FP8 = "fbgemm_fp8" | |
class AWQLinearVersion(str, Enum): | |
GEMM = "gemm" | |
GEMV = "gemv" | |
EXLLAMA = "exllama" | |
def from_str(version: str): | |
version = version.lower() | |
if version == "gemm": | |
return AWQLinearVersion.GEMM | |
elif version == "gemv": | |
return AWQLinearVersion.GEMV | |
elif version == "exllama": | |
return AWQLinearVersion.EXLLAMA | |
else: | |
raise ValueError(f"Unknown AWQLinearVersion {version}") | |
class AwqBackendPackingMethod(str, Enum): | |
AUTOAWQ = "autoawq" | |
LLMAWQ = "llm-awq" | |
class QuantizationConfigMixin: | |
""" | |
Mixin class for quantization config | |
""" | |
quant_method: QuantizationMethod | |
def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs): | |
""" | |
Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters. | |
Args: | |
config_dict (`Dict[str, Any]`): | |
Dictionary that will be used to instantiate the configuration object. | |
return_unused_kwargs (`bool`,*optional*, defaults to `False`): | |
Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in | |
`PreTrainedModel`. | |
kwargs (`Dict[str, Any]`): | |
Additional parameters from which to initialize the configuration object. | |
Returns: | |
[`QuantizationConfigMixin`]: The configuration object instantiated from those parameters. | |
""" | |
config = cls(**config_dict) | |
to_remove = [] | |
for key, value in kwargs.items(): | |
if hasattr(config, key): | |
setattr(config, key, value) | |
to_remove.append(key) | |
for key in to_remove: | |
kwargs.pop(key, None) | |
if return_unused_kwargs: | |
return config, kwargs | |
else: | |
return config | |
def to_json_file(self, json_file_path: Union[str, os.PathLike]): | |
""" | |
Save this instance to a JSON file. | |
Args: | |
json_file_path (`str` or `os.PathLike`): | |
Path to the JSON file in which this configuration instance's parameters will be saved. | |
use_diff (`bool`, *optional*, defaults to `True`): | |
If set to `True`, only the difference between the config instance and the default | |
`QuantizationConfig()` is serialized to JSON file. | |
""" | |
with open(json_file_path, "w", encoding="utf-8") as writer: | |
config_dict = self.to_dict() | |
json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n" | |
writer.write(json_string) | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Serializes this instance to a Python dictionary. Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. | |
""" | |
return copy.deepcopy(self.__dict__) | |
def __iter__(self): | |
"""allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin""" | |
for attr, value in copy.deepcopy(self.__dict__).items(): | |
yield attr, value | |
def __repr__(self): | |
return f"{self.__class__.__name__} {self.to_json_string()}" | |
def to_json_string(self, use_diff: bool = True) -> str: | |
""" | |
Serializes this instance to a JSON string. | |
Args: | |
use_diff (`bool`, *optional*, defaults to `True`): | |
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` | |
is serialized to JSON string. | |
Returns: | |
`str`: String containing all the attributes that make up this configuration instance in JSON format. | |
""" | |
if use_diff is True: | |
config_dict = self.to_diff_dict() | |
else: | |
config_dict = self.to_dict() | |
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" | |
def update(self, **kwargs): | |
""" | |
Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes, | |
returning all the unused kwargs. | |
Args: | |
kwargs (`Dict[str, Any]`): | |
Dictionary of attributes to tentatively update this class. | |
Returns: | |
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance. | |
""" | |
to_remove = [] | |
for key, value in kwargs.items(): | |
if hasattr(self, key): | |
setattr(self, key, value) | |
to_remove.append(key) | |
# Remove all the attributes that were updated, without modifying the input dict | |
unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove} | |
return unused_kwargs | |
class HqqConfig(QuantizationConfigMixin): | |
""" | |
This is wrapper around hqq's BaseQuantizeConfig. | |
Args: | |
nbits (`int`, *optional*, defaults to 4): | |
Number of bits. Supported values are (8, 4, 3, 2, 1). | |
group_size (`int`, *optional*, defaults to 64): | |
Group-size value. Supported values are any value that is divisble by weight.shape[axis]). | |
quant_zero (`bool`, *optional*, defaults to `True`): | |
Quantize the zero-point if set to `True`. | |
quant_scale (`bool`, *optional*, defaults to `False`): | |
Quantize the scaling if set to `True`. | |
offload_meta (`bool`, *optional*, defaults to `False`): | |
Offload the meta-data to the CPU if set to `True`. | |
view_as_float (`bool`, *optional*, defaults to `False`): | |
View the quantized weight as float (used in distributed training) if set to `True`. | |
axis (`int`, *optional*, defaults to 0): | |
Axis along which grouping is performed. Supported values are 0 or 1. | |
dynamic_config (dict, *optional*): | |
Parameters for dynamic configuration. The key is the name tag of the layer and the value is a quantization config. | |
If set, each layer specified by its id will use its dedicated quantization configuration. | |
skip_modules (`List[str]`, *optional*, defaults to `['lm_head']`): | |
List of `nn.Linear` layers to skip. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional parameters from which to initialize the configuration object. | |
""" | |
def __init__( | |
self, | |
nbits: int = 4, | |
group_size: int = 64, | |
quant_zero: bool = True, | |
quant_scale: bool = False, | |
offload_meta: bool = False, | |
view_as_float: bool = False, | |
axis: int = 0, | |
dynamic_config: Optional[dict] = None, | |
skip_modules: List[str] = ["lm_head"], | |
**kwargs, | |
): | |
if is_hqq_available(): | |
from hqq.core.quantize import BaseQuantizeConfig as HQQBaseQuantizeConfig | |
if axis not in [0, 1]: | |
raise ValueError("Invalid axis value. Only 0 and 1 are allowed.") | |
if dynamic_config is not None: | |
self.quant_config = {} | |
for key in dynamic_config: | |
self.quant_config[key] = HQQBaseQuantizeConfig(**dynamic_config[key]) | |
else: | |
self.quant_config = HQQBaseQuantizeConfig( | |
**{ | |
"nbits": nbits, | |
"group_size": group_size, | |
"quant_zero": quant_zero, | |
"quant_scale": quant_scale, | |
"offload_meta": offload_meta, | |
"view_as_float": view_as_float, | |
"axis": axis, | |
} | |
) | |
self.quant_method = QuantizationMethod.HQQ | |
self.skip_modules = skip_modules | |
self.post_init() | |
def post_init(self): | |
r""" | |
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. | |
""" | |
pass | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Serializes this instance to a Python dictionary. Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. | |
""" | |
return self.quant_config | |
def __repr__(self): | |
config_dict = self.to_dict() | |
return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" | |
def to_diff_dict(self) -> Dict[str, Any]: | |
""" | |
Removes all attributes from config which correspond to the default config attributes for better readability and | |
serializes to a Python dictionary. | |
Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
config_dict = self.to_dict() | |
# get the default config dict | |
default_config_dict = HqqConfig().to_dict() | |
serializable_config_dict = {} | |
# only serialize values that differ from the default config | |
for key, value in config_dict.items(): | |
if value != default_config_dict[key]: | |
serializable_config_dict[key] = value | |
return serializable_config_dict | |
class BitsAndBytesConfig(QuantizationConfigMixin): | |
""" | |
This is a wrapper class about all possible attributes and features that you can play with a model that has been | |
loaded using `bitsandbytes`. | |
This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive. | |
Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`, | |
then more arguments will be added to this class. | |
Args: | |
load_in_8bit (`bool`, *optional*, defaults to `False`): | |
This flag is used to enable 8-bit quantization with LLM.int8(). | |
load_in_4bit (`bool`, *optional*, defaults to `False`): | |
This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from | |
`bitsandbytes`. | |
llm_int8_threshold (`float`, *optional*, defaults to 6.0): | |
This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix | |
Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value | |
that is above this threshold will be considered an outlier and the operation on those values will be done | |
in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but | |
there are some exceptional systematic outliers that are very differently distributed for large models. | |
These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of | |
magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, | |
but a lower threshold might be needed for more unstable models (small models, fine-tuning). | |
llm_int8_skip_modules (`List[str]`, *optional*): | |
An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as | |
Jukebox that has several heads in different places and not necessarily at the last position. For example | |
for `CausalLM` models, the last `lm_head` is kept in its original `dtype`. | |
llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`): | |
This flag is used for advanced use cases and users that are aware of this feature. If you want to split | |
your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use | |
this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8 | |
operations will not be run on CPU. | |
llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`): | |
This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not | |
have to be converted back and forth for the backward pass. | |
bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`): | |
This sets the computational type which might be different than the input type. For example, inputs might be | |
fp32, but computation can be set to bf16 for speedups. | |
bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`): | |
This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types | |
which are specified by `fp4` or `nf4`. | |
bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`): | |
This flag is used for nested quantization where the quantization constants from the first quantization are | |
quantized again. | |
bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`): | |
This sets the storage type to pack the quanitzed 4-bit prarams. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional parameters from which to initialize the configuration object. | |
""" | |
def __init__( | |
self, | |
load_in_8bit=False, | |
load_in_4bit=False, | |
llm_int8_threshold=6.0, | |
llm_int8_skip_modules=None, | |
llm_int8_enable_fp32_cpu_offload=False, | |
llm_int8_has_fp16_weight=False, | |
bnb_4bit_compute_dtype=None, | |
bnb_4bit_quant_type="fp4", | |
bnb_4bit_use_double_quant=False, | |
bnb_4bit_quant_storage=None, | |
**kwargs, | |
): | |
self.quant_method = QuantizationMethod.BITS_AND_BYTES | |
if load_in_4bit and load_in_8bit: | |
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") | |
self._load_in_8bit = load_in_8bit | |
self._load_in_4bit = load_in_4bit | |
self.llm_int8_threshold = llm_int8_threshold | |
self.llm_int8_skip_modules = llm_int8_skip_modules | |
self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload | |
self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight | |
self.bnb_4bit_quant_type = bnb_4bit_quant_type | |
self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant | |
if bnb_4bit_compute_dtype is None: | |
self.bnb_4bit_compute_dtype = torch.float32 | |
elif isinstance(bnb_4bit_compute_dtype, str): | |
self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype) | |
elif isinstance(bnb_4bit_compute_dtype, torch.dtype): | |
self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype | |
else: | |
raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") | |
if bnb_4bit_quant_storage is None: | |
self.bnb_4bit_quant_storage = torch.uint8 | |
elif isinstance(bnb_4bit_quant_storage, str): | |
if bnb_4bit_quant_storage not in ["float16", "float32", "int8", "uint8", "float64", "bfloat16"]: | |
raise ValueError( | |
"`bnb_4bit_quant_storage` must be a valid string (one of 'float16', 'float32', 'int8', 'uint8', 'float64', 'bfloat16') " | |
) | |
self.bnb_4bit_quant_storage = getattr(torch, bnb_4bit_quant_storage) | |
elif isinstance(bnb_4bit_quant_storage, torch.dtype): | |
self.bnb_4bit_quant_storage = bnb_4bit_quant_storage | |
else: | |
raise ValueError("bnb_4bit_quant_storage must be a string or a torch.dtype") | |
if kwargs: | |
logger.warning(f"Unused kwargs: {list(kwargs.keys())}. These kwargs are not used in {self.__class__}.") | |
self.post_init() | |
def load_in_4bit(self): | |
return self._load_in_4bit | |
def load_in_4bit(self, value: bool): | |
if not isinstance(value, bool): | |
raise TypeError("load_in_4bit must be a boolean") | |
if self.load_in_8bit and value: | |
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") | |
self._load_in_4bit = value | |
def load_in_8bit(self): | |
return self._load_in_8bit | |
def load_in_8bit(self, value: bool): | |
if not isinstance(value, bool): | |
raise TypeError("load_in_8bit must be a boolean") | |
if self.load_in_4bit and value: | |
raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") | |
self._load_in_8bit = value | |
def post_init(self): | |
r""" | |
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. | |
""" | |
if not isinstance(self.load_in_4bit, bool): | |
raise TypeError("load_in_4bit must be a boolean") | |
if not isinstance(self.load_in_8bit, bool): | |
raise TypeError("load_in_8bit must be a boolean") | |
if not isinstance(self.llm_int8_threshold, float): | |
raise TypeError("llm_int8_threshold must be a float") | |
if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list): | |
raise TypeError("llm_int8_skip_modules must be a list of strings") | |
if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool): | |
raise TypeError("llm_int8_enable_fp32_cpu_offload must be a boolean") | |
if not isinstance(self.llm_int8_has_fp16_weight, bool): | |
raise TypeError("llm_int8_has_fp16_weight must be a boolean") | |
if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): | |
raise TypeError("bnb_4bit_compute_dtype must be torch.dtype") | |
if not isinstance(self.bnb_4bit_quant_type, str): | |
raise TypeError("bnb_4bit_quant_type must be a string") | |
if not isinstance(self.bnb_4bit_use_double_quant, bool): | |
raise TypeError("bnb_4bit_use_double_quant must be a boolean") | |
if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( | |
"0.39.0" | |
): | |
raise ValueError( | |
"4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" | |
) | |
def is_quantizable(self): | |
r""" | |
Returns `True` if the model is quantizable, `False` otherwise. | |
""" | |
return self.load_in_8bit or self.load_in_4bit | |
def quantization_method(self): | |
r""" | |
This method returns the quantization method used for the model. If the model is not quantizable, it returns | |
`None`. | |
""" | |
if self.load_in_8bit: | |
return "llm_int8" | |
elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4": | |
return "fp4" | |
elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4": | |
return "nf4" | |
else: | |
return None | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Serializes this instance to a Python dictionary. Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. | |
""" | |
output = copy.deepcopy(self.__dict__) | |
output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1] | |
output["bnb_4bit_quant_storage"] = str(output["bnb_4bit_quant_storage"]).split(".")[1] | |
output["load_in_4bit"] = self.load_in_4bit | |
output["load_in_8bit"] = self.load_in_8bit | |
return output | |
def __repr__(self): | |
config_dict = self.to_dict() | |
return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" | |
def to_diff_dict(self) -> Dict[str, Any]: | |
""" | |
Removes all attributes from config which correspond to the default config attributes for better readability and | |
serializes to a Python dictionary. | |
Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
config_dict = self.to_dict() | |
# get the default config dict | |
default_config_dict = BitsAndBytesConfig().to_dict() | |
serializable_config_dict = {} | |
# only serialize values that differ from the default config | |
for key, value in config_dict.items(): | |
if value != default_config_dict[key]: | |
serializable_config_dict[key] = value | |
return serializable_config_dict | |
class ExllamaVersion(int, Enum): | |
ONE = 1 | |
TWO = 2 | |
class GPTQConfig(QuantizationConfigMixin): | |
""" | |
This is a wrapper class about all possible attributes and features that you can play with a model that has been | |
loaded using `optimum` api for gptq quantization relying on auto_gptq backend. | |
Args: | |
bits (`int`): | |
The number of bits to quantize to, supported numbers are (2, 3, 4, 8). | |
tokenizer (`str` or `PreTrainedTokenizerBase`, *optional*): | |
The tokenizer used to process the dataset. You can pass either: | |
- A custom tokenizer object. | |
- A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. | |
- A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved | |
using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
dataset (`Union[List[str]]`, *optional*): | |
The dataset used for quantization. You can provide your own dataset in a list of string or just use the | |
original datasets used in GPTQ paper ['wikitext2','c4','c4-new'] | |
group_size (`int`, *optional*, defaults to 128): | |
The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization. | |
damp_percent (`float`, *optional*, defaults to 0.1): | |
The percent of the average Hessian diagonal to use for dampening. Recommended value is 0.1. | |
desc_act (`bool`, *optional*, defaults to `False`): | |
Whether to quantize columns in order of decreasing activation size. Setting it to False can significantly | |
speed up inference but the perplexity may become slightly worse. Also known as act-order. | |
sym (`bool`, *optional*, defaults to `True`): | |
Whether to use symetric quantization. | |
true_sequential (`bool`, *optional*, defaults to `True`): | |
Whether to perform sequential quantization even within a single Transformer block. Instead of quantizing | |
the entire block at once, we perform layer-wise quantization. As a result, each layer undergoes | |
quantization using inputs that have passed through the previously quantized layers. | |
use_cuda_fp16 (`bool`, *optional*, defaults to `False`): | |
Whether or not to use optimized cuda kernel for fp16 model. Need to have model in fp16. | |
model_seqlen (`int`, *optional*): | |
The maximum sequence length that the model can take. | |
block_name_to_quantize (`str`, *optional*): | |
The transformers block name to quantize. If None, we will infer the block name using common patterns (e.g. model.layers) | |
module_name_preceding_first_block (`List[str]`, *optional*): | |
The layers that are preceding the first Transformer block. | |
batch_size (`int`, *optional*, defaults to 1): | |
The batch size used when processing the dataset | |
pad_token_id (`int`, *optional*): | |
The pad token id. Needed to prepare the dataset when `batch_size` > 1. | |
use_exllama (`bool`, *optional*): | |
Whether to use exllama backend. Defaults to `True` if unset. Only works with `bits` = 4. | |
max_input_length (`int`, *optional*): | |
The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input | |
length. It is specific to the exllama backend with act-order. | |
exllama_config (`Dict[str, Any]`, *optional*): | |
The exllama config. You can specify the version of the exllama kernel through the `version` key. Defaults | |
to `{"version": 1}` if unset. | |
cache_block_outputs (`bool`, *optional*, defaults to `True`): | |
Whether to cache block outputs to reuse as inputs for the succeeding block. | |
modules_in_block_to_quantize (`List[List[str]]`, *optional*): | |
List of list of module names to quantize in the specified block. This argument is useful to exclude certain linear modules from being quantized. | |
The block to quantize can be specified by setting `block_name_to_quantize`. We will quantize each list sequentially. If not set, we will quantize all linear layers. | |
Example: `modules_in_block_to_quantize =[["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"], ["self_attn.o_proj"]]`. | |
In this example, we will first quantize the q,k,v layers simultaneously since they are independent. | |
Then, we will quantize `self_attn.o_proj` layer with the q,k,v layers quantized. This way, we will get | |
better results since it reflects the real input `self_attn.o_proj` will get when the model is quantized. | |
""" | |
def __init__( | |
self, | |
bits: int, | |
tokenizer: Any = None, | |
dataset: Optional[Union[List[str], str]] = None, | |
group_size: int = 128, | |
damp_percent: float = 0.1, | |
desc_act: bool = False, | |
sym: bool = True, | |
true_sequential: bool = True, | |
use_cuda_fp16: bool = False, | |
model_seqlen: Optional[int] = None, | |
block_name_to_quantize: Optional[str] = None, | |
module_name_preceding_first_block: Optional[List[str]] = None, | |
batch_size: int = 1, | |
pad_token_id: Optional[int] = None, | |
use_exllama: Optional[bool] = None, | |
max_input_length: Optional[int] = None, | |
exllama_config: Optional[Dict[str, Any]] = None, | |
cache_block_outputs: bool = True, | |
modules_in_block_to_quantize: Optional[List[List[str]]] = None, | |
**kwargs, | |
): | |
self.quant_method = QuantizationMethod.GPTQ | |
self.bits = bits | |
self.tokenizer = tokenizer | |
self.dataset = dataset | |
self.group_size = group_size | |
self.damp_percent = damp_percent | |
self.desc_act = desc_act | |
self.sym = sym | |
self.true_sequential = true_sequential | |
self.use_cuda_fp16 = use_cuda_fp16 | |
self.model_seqlen = model_seqlen | |
self.block_name_to_quantize = block_name_to_quantize | |
self.module_name_preceding_first_block = module_name_preceding_first_block | |
self.batch_size = batch_size | |
self.pad_token_id = pad_token_id | |
self.use_exllama = use_exllama | |
self.max_input_length = max_input_length | |
self.exllama_config = exllama_config | |
self.disable_exllama = kwargs.pop("disable_exllama", None) | |
self.cache_block_outputs = cache_block_outputs | |
self.modules_in_block_to_quantize = modules_in_block_to_quantize | |
self.post_init() | |
def get_loading_attributes(self): | |
attibutes_dict = copy.deepcopy(self.__dict__) | |
loading_attibutes = ["disable_exllama", "use_exllama", "exllama_config", "use_cuda_fp16", "max_input_length"] | |
loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} | |
return loading_attibutes_dict | |
def post_init(self): | |
r""" | |
Safety checker that arguments are correct | |
""" | |
if self.bits not in [2, 3, 4, 8]: | |
raise ValueError(f"Only support quantization to [2,3,4,8] bits but found {self.bits}") | |
if self.group_size != -1 and self.group_size <= 0: | |
raise ValueError("group_size must be greater than 0 or equal to -1") | |
if not (0 < self.damp_percent < 1): | |
raise ValueError("damp_percent must between 0 and 1.") | |
if self.dataset is not None: | |
if isinstance(self.dataset, str): | |
if self.dataset in ["ptb", "ptb-new"]: | |
raise ValueError( | |
f"""{self.dataset} dataset was deprecated. You can only choose between | |
['wikitext2','c4','c4-new']""" | |
) | |
if self.dataset not in ["wikitext2", "c4", "c4-new"]: | |
raise ValueError( | |
f"""You have entered a string value for dataset. You can only choose between | |
['wikitext2','c4','c4-new'], but we found {self.dataset}""" | |
) | |
elif not isinstance(self.dataset, list): | |
raise ValueError( | |
f"""dataset needs to be either a list of string or a value in | |
['wikitext2','c4','c4-new'], but we found {self.dataset}""" | |
) | |
if self.disable_exllama is None and self.use_exllama is None: | |
# New default behaviour | |
self.use_exllama = True | |
elif self.disable_exllama is not None and self.use_exllama is None: | |
# Follow pattern of old config | |
logger.warning( | |
"Using `disable_exllama` is deprecated and will be removed in version 4.37. Use `use_exllama` instead and specify the version with `exllama_config`." | |
"The value of `use_exllama` will be overwritten by `disable_exllama` passed in `GPTQConfig` or stored in your config file." | |
) | |
self.use_exllama = not self.disable_exllama | |
self.disable_exllama = None | |
elif self.disable_exllama is not None and self.use_exllama is not None: | |
# Only happens if user explicitly passes in both arguments | |
raise ValueError("Cannot specify both `disable_exllama` and `use_exllama`. Please use just `use_exllama`") | |
if self.exllama_config is None: | |
self.exllama_config = {"version": ExllamaVersion.ONE} | |
else: | |
if "version" not in self.exllama_config: | |
raise ValueError("`exllama_config` needs to have a `version` key.") | |
elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]: | |
exllama_version = self.exllama_config["version"] | |
raise ValueError( | |
f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}" | |
) | |
if self.bits == 4 and self.use_exllama: | |
if self.exllama_config["version"] == ExllamaVersion.ONE: | |
logger.info( | |
"You have activated exllama backend. Note that you can get better inference " | |
"speed using exllamav2 kernel by setting `exllama_config`." | |
) | |
elif self.exllama_config["version"] == ExllamaVersion.TWO: | |
optimum_version = version.parse(importlib.metadata.version("optimum")) | |
autogptq_version = version.parse(importlib.metadata.version("auto_gptq")) | |
if optimum_version <= version.parse("1.13.2") or autogptq_version <= version.parse("0.4.2"): | |
raise ValueError( | |
f"You need optimum > 1.13.2 and auto-gptq > 0.4.2 . Make sure to have that version installed - detected version : optimum {optimum_version} and autogptq {autogptq_version}" | |
) | |
if self.modules_in_block_to_quantize is not None: | |
optimum_version = version.parse(importlib.metadata.version("optimum")) | |
if optimum_version < version.parse("1.15.0"): | |
raise ValueError( | |
"You current version of `optimum` does not support `modules_in_block_to_quantize` quantization argument, please upgrade `optimum` package to a version superior than 1.15.0 ." | |
) | |
def to_dict(self): | |
config_dict = super().to_dict() | |
config_dict.pop("disable_exllama", None) | |
return config_dict | |
def to_dict_optimum(self): | |
""" | |
Get compatible dict for optimum gptq config | |
""" | |
quant_dict = self.to_dict() | |
# make it compatible with optimum config | |
quant_dict["disable_exllama"] = not self.use_exllama | |
return quant_dict | |
def from_dict_optimum(cls, config_dict): | |
""" | |
Get compatible class with optimum gptq config dict | |
""" | |
if "disable_exllama" in config_dict: | |
config_dict["use_exllama"] = not config_dict["disable_exllama"] | |
# switch to None to not trigger the warning | |
config_dict["disable_exllama"] = None | |
config = cls(**config_dict) | |
return config | |
class AwqConfig(QuantizationConfigMixin): | |
""" | |
This is a wrapper class about all possible attributes and features that you can play with a model that has been | |
loaded using `auto-awq` library awq quantization relying on auto_awq backend. | |
Args: | |
bits (`int`, *optional*, defaults to 4): | |
The number of bits to quantize to. | |
group_size (`int`, *optional*, defaults to 128): | |
The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization. | |
zero_point (`bool`, *optional*, defaults to `True`): | |
Whether to use zero point quantization. | |
version (`AWQLinearVersion`, *optional*, defaults to `AWQLinearVersion.GEMM`): | |
The version of the quantization algorithm to use. GEMM is better for big batch_size (e.g. >= 8) otherwise, | |
GEMV is better (e.g. < 8 ). GEMM models are compatible with Exllama kernels. | |
backend (`AwqBackendPackingMethod`, *optional*, defaults to `AwqBackendPackingMethod.AUTOAWQ`): | |
The quantization backend. Some models might be quantized using `llm-awq` backend. This is useful for users | |
that quantize their own models using `llm-awq` library. | |
do_fuse (`bool`, *optional*, defaults to `False`): | |
Whether to fuse attention and mlp layers together for faster inference | |
fuse_max_seq_len (`int`, *optional*): | |
The Maximum sequence length to generate when using fusing. | |
modules_to_fuse (`dict`, *optional*, default to `None`): | |
Overwrite the natively supported fusing scheme with the one specified by the users. | |
modules_to_not_convert (`list`, *optional*, default to `None`): | |
The list of modules to not quantize, useful for quantizing models that explicitly require to have | |
some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers). | |
Note you cannot quantize directly with transformers, please refer to `AutoAWQ` documentation for quantizing HF models. | |
exllama_config (`Dict[str, Any]`, *optional*): | |
You can specify the version of the exllama kernel through the `version` key, the maximum sequence | |
length through the `max_input_len` key, and the maximum batch size through the `max_batch_size` key. | |
Defaults to `{"version": 2, "max_input_len": 2048, "max_batch_size": 8}` if unset. | |
""" | |
def __init__( | |
self, | |
bits: int = 4, | |
group_size: int = 128, | |
zero_point: bool = True, | |
version: AWQLinearVersion = AWQLinearVersion.GEMM, | |
backend: AwqBackendPackingMethod = AwqBackendPackingMethod.AUTOAWQ, | |
do_fuse: Optional[bool] = None, | |
fuse_max_seq_len: Optional[int] = None, | |
modules_to_fuse: Optional[dict] = None, | |
modules_to_not_convert: Optional[List] = None, | |
exllama_config: Optional[Dict[str, int]] = None, | |
**kwargs, | |
): | |
self.quant_method = QuantizationMethod.AWQ | |
self.bits = bits | |
self.group_size = group_size | |
self.zero_point = zero_point | |
self.version = version | |
self.backend = backend | |
self.fuse_max_seq_len = fuse_max_seq_len | |
self.modules_to_not_convert = modules_to_not_convert | |
self.exllama_config = exllama_config | |
self.modules_to_fuse = modules_to_fuse | |
if do_fuse is None: | |
self.do_fuse = modules_to_fuse is not None and len(modules_to_fuse) > 0 | |
else: | |
self.do_fuse = do_fuse | |
self.fuse_max_seq_len = fuse_max_seq_len | |
self.post_init() | |
def post_init(self): | |
r""" | |
Safety checker that arguments are correct | |
""" | |
if not torch.cuda.is_available(): | |
raise ValueError("AWQ is only available on GPU") | |
if self.backend not in [AwqBackendPackingMethod.AUTOAWQ, AwqBackendPackingMethod.LLMAWQ]: | |
raise ValueError( | |
f"Only supported quantization backends in {AwqBackendPackingMethod.AUTOAWQ} and {AwqBackendPackingMethod.LLMAWQ} - not recognized backend {self.backend}" | |
) | |
self.version = AWQLinearVersion.from_str(self.version) | |
if self.version not in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV, AWQLinearVersion.EXLLAMA]: | |
raise ValueError( | |
f"Only supported versions are in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV, AWQLinearVersion.EXLLAMA] - not recognized version {self.version}" | |
) | |
if self.backend == AwqBackendPackingMethod.LLMAWQ: | |
compute_capability = torch.cuda.get_device_capability() | |
major, minor = compute_capability | |
if major < 8: | |
raise ValueError("LLM-AWQ backend is only supported on GPUs with compute capability >= 8.0") | |
if self.do_fuse and self.fuse_max_seq_len is None: | |
raise ValueError( | |
"You cannot enable fused modules without specifying a `fuse_max_seq_len`, make sure to pass a valid `fuse_max_seq_len` for your usecase" | |
) | |
if self.do_fuse: | |
awq_version_supports_fusing = False | |
MIN_AWQ_VERSION = "0.1.7" | |
if is_auto_awq_available(): | |
awq_version_supports_fusing = version.parse(importlib.metadata.version("autoawq")) >= version.parse( | |
MIN_AWQ_VERSION | |
) | |
if not awq_version_supports_fusing: | |
raise ValueError( | |
f"You current version of `autoawq` does not support module fusing, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}." | |
) | |
if self.modules_to_not_convert is not None: | |
awq_version_supports_non_conversion = False | |
MIN_AWQ_VERSION = "0.1.8" | |
if is_auto_awq_available(): | |
awq_version_supports_non_conversion = version.parse( | |
importlib.metadata.version("autoawq") | |
) >= version.parse(MIN_AWQ_VERSION) | |
if not awq_version_supports_non_conversion: | |
raise ValueError( | |
f"You current version of `autoawq` does not support module quantization skipping, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}." | |
) | |
if self.do_fuse and self.modules_to_fuse is not None: | |
required_keys = [ | |
"hidden_size", | |
"num_attention_heads", | |
"num_key_value_heads", | |
"mlp", | |
"attention", | |
"layernorm", | |
"use_alibi", | |
] | |
if not all(key in self.modules_to_fuse for key in required_keys): | |
raise ValueError( | |
f"Required fields are missing in the fusing mapping, required fields are {required_keys}" | |
) | |
if self.version == AWQLinearVersion.EXLLAMA: | |
awq_version_supports_exllama = False | |
MIN_AWQ_VERSION = "0.2.0" | |
if is_auto_awq_available(): | |
awq_version_supports_exllama = version.parse(importlib.metadata.version("autoawq")) >= version.parse( | |
MIN_AWQ_VERSION | |
) | |
if not awq_version_supports_exllama: | |
raise ValueError( | |
f"You current version of `autoawq` does not support exllama backend, " | |
f"please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}." | |
) | |
if self.exllama_config is None: | |
self.exllama_config = {"version": ExllamaVersion.TWO, "max_input_len": 2048, "max_batch_size": 8} | |
else: | |
if "version" not in self.exllama_config: | |
raise ValueError("`exllama_config` needs to have a `version` key.") | |
elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]: | |
exllama_version = self.exllama_config["version"] | |
raise ValueError( | |
f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}" | |
) | |
def get_loading_attributes(self): | |
attibutes_dict = copy.deepcopy(self.__dict__) | |
loading_attibutes = ["version", "do_fuse", "modules_to_fuse", "fuse_max_seq_len", "exllama_config"] | |
loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} | |
return loading_attibutes_dict | |
class AqlmConfig(QuantizationConfigMixin): | |
""" | |
This is a wrapper class about `aqlm` parameters. | |
Args: | |
in_group_size (`int`, *optional*, defaults to 8): | |
The group size along the input dimension. | |
out_group_size (`int`, *optional*, defaults to 1): | |
The group size along the output dimension. It's recommended to always use 1. | |
num_codebooks (`int`, *optional*, defaults to 1): | |
Number of codebooks for the Additive Quantization procedure. | |
nbits_per_codebook (`int`, *optional*, defaults to 16): | |
Number of bits encoding a single codebook vector. Codebooks size is 2**nbits_per_codebook. | |
linear_weights_not_to_quantize (`Optional[List[str]]`, *optional*): | |
List of full paths of `nn.Linear` weight parameters that shall not be quantized. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional parameters from which to initialize the configuration object. | |
""" | |
def __init__( | |
self, | |
in_group_size: int = 8, | |
out_group_size: int = 1, | |
num_codebooks: int = 1, | |
nbits_per_codebook: int = 16, | |
linear_weights_not_to_quantize: Optional[List[str]] = None, | |
**kwargs, | |
): | |
self.quant_method = QuantizationMethod.AQLM | |
self.in_group_size = in_group_size | |
self.out_group_size = out_group_size | |
self.num_codebooks = num_codebooks | |
self.nbits_per_codebook = nbits_per_codebook | |
self.linear_weights_not_to_quantize = linear_weights_not_to_quantize | |
self.post_init() | |
def post_init(self): | |
r""" | |
Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. | |
""" | |
if not isinstance(self.in_group_size, int): | |
raise TypeError("in_group_size must be a float") | |
if not isinstance(self.out_group_size, int): | |
raise TypeError("out_group_size must be a float") | |
if not isinstance(self.num_codebooks, int): | |
raise TypeError("num_codebooks must be a float") | |
if not isinstance(self.nbits_per_codebook, int): | |
raise TypeError("nbits_per_codebook must be a float") | |
if self.linear_weights_not_to_quantize is not None and not isinstance( | |
self.linear_weights_not_to_quantize, list | |
): | |
raise ValueError("linear_weights_not_to_quantize must be a list of strings") | |
if self.linear_weights_not_to_quantize is None: | |
self.linear_weights_not_to_quantize = [] | |
class QuantoConfig(QuantizationConfigMixin): | |
""" | |
This is a wrapper class about all possible attributes and features that you can play with a model that has been | |
loaded using `quanto`. | |
Args: | |
weights (`str`, *optional*, defaults to `"int8"`): | |
The target dtype for the weights after quantization. Supported values are ("float8","int8","int4","int2") | |
activations (`str`, *optional*): | |
The target dtype for the activations after quantization. Supported values are (None,"int8","float8") | |
modules_to_not_convert (`list`, *optional*, default to `None`): | |
The list of modules to not quantize, useful for quantizing models that explicitly require to have | |
some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers). | |
""" | |
def __init__( | |
self, | |
weights="int8", | |
activations=None, | |
modules_to_not_convert: Optional[List] = None, | |
**kwargs, | |
): | |
self.quant_method = QuantizationMethod.QUANTO | |
self.weights = weights | |
self.activations = activations | |
self.modules_to_not_convert = modules_to_not_convert | |
self.post_init() | |
def post_init(self): | |
r""" | |
Safety checker that arguments are correct | |
""" | |
accepted_weights = ["float8", "int8", "int4", "int2"] | |
accepted_activations = [None, "int8", "float8"] | |
if self.weights not in accepted_weights: | |
raise ValueError(f"Only support weights in {accepted_weights} but found {self.weights}") | |
if self.activations not in accepted_activations: | |
raise ValueError(f"Only support weights in {accepted_activations} but found {self.activations}") | |
class EetqConfig(QuantizationConfigMixin): | |
""" | |
This is a wrapper class about all possible attributes and features that you can play with a model that has been | |
loaded using `eetq`. | |
Args: | |
weights (`str`, *optional*, defaults to `"int8"`): | |
The target dtype for the weights. Supported value is only "int8" | |
modules_to_not_convert (`list`, *optional*, default to `None`): | |
The list of modules to not quantize, useful for quantizing models that explicitly require to have | |
some modules left in their original precision. | |
""" | |
def __init__( | |
self, | |
weights: str = "int8", | |
modules_to_not_convert: Optional[List] = None, | |
**kwargs, | |
): | |
self.quant_method = QuantizationMethod.EETQ | |
self.weights = weights | |
self.modules_to_not_convert = modules_to_not_convert | |
self.post_init() | |
def post_init(self): | |
r""" | |
Safety checker that arguments are correct | |
""" | |
accepted_weights = ["int8"] | |
if self.weights not in accepted_weights: | |
raise ValueError(f"Only support weights in {accepted_weights} but found {self.weights}") | |
class FbgemmFp8Config(QuantizationConfigMixin): | |
""" | |
This is a wrapper class about all possible attributes and features that you can play with a model that has been | |
loaded using fbgemm fp8 quantization. | |
Args: | |
activation_scale_ub (`float`, *optional*, defaults to 1200.0): | |
The activation scale upper bound. This is used when quantizing the input activation. | |
modules_to_not_convert (`list`, *optional*, default to `None`): | |
The list of modules to not quantize, useful for quantizing models that explicitly require to have | |
some modules left in their original precision. | |
""" | |
def __init__( | |
self, | |
activation_scale_ub: float = 1200.0, | |
modules_to_not_convert: Optional[List] = None, | |
**kwargs, | |
): | |
self.quant_method = QuantizationMethod.FBGEMM_FP8 | |
self.activation_scale_ub = activation_scale_ub | |
self.modules_to_not_convert = modules_to_not_convert | |
def get_loading_attributes(self): | |
attibutes_dict = copy.deepcopy(self.__dict__) | |
loading_attibutes = ["activation_scale_ub"] | |
loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} | |
return loading_attibutes_dict | |