MBERT_revised-revised-outputs

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4229
  • Accuracy: 0.7431
  • F1: 0.7564
  • Precision: 0.7276
  • Recall: 0.7876

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6935 0.7220 1000 0.6865 0.5423 0.6628 0.5286 0.8883
0.6351 1.4440 2000 0.5492 0.6788 0.7211 0.6435 0.8199
0.5285 2.1661 3000 0.4751 0.7106 0.7428 0.6753 0.8255
0.4727 2.8881 4000 0.4398 0.7220 0.7598 0.6753 0.8686
0.4405 3.6101 5000 0.4205 0.7293 0.7641 0.6838 0.8656
0.4221 4.3321 6000 0.4113 0.7339 0.7290 0.7525 0.7069
0.41 5.0542 7000 0.4145 0.7386 0.7700 0.6945 0.8640
0.3957 5.7762 8000 0.4018 0.7399 0.7807 0.6811 0.9145
0.388 6.4982 9000 0.3993 0.7416 0.7789 0.6872 0.8989
0.3807 7.2202 10000 0.3996 0.7413 0.7786 0.6870 0.8985
0.3734 7.9422 11000 0.3939 0.7459 0.7459 0.7553 0.7368
0.3719 8.6643 12000 0.3923 0.7455 0.7733 0.7043 0.8572
0.3625 9.3863 13000 0.3942 0.7405 0.7759 0.6894 0.8873
0.3646 10.1083 14000 0.4070 0.7422 0.7694 0.7032 0.8493
0.3578 10.8303 15000 0.3988 0.7435 0.7505 0.7396 0.7617
0.354 11.5523 16000 0.4031 0.7470 0.7616 0.7283 0.7980
0.3509 12.2744 17000 0.4089 0.7472 0.7476 0.7559 0.7394
0.3503 12.9964 18000 0.4029 0.7488 0.7676 0.7220 0.8195
0.3451 13.7184 19000 0.4127 0.7439 0.7449 0.7515 0.7384
0.3427 14.4404 20000 0.4196 0.7469 0.7684 0.7159 0.8291
0.3425 15.1625 21000 0.4168 0.7501 0.7736 0.7147 0.8429
0.3386 15.8845 22000 0.4131 0.7459 0.7507 0.7457 0.7559
0.3349 16.6065 23000 0.4279 0.7443 0.7472 0.7483 0.7460
0.336 17.3285 24000 0.4199 0.7441 0.7523 0.7378 0.7675
0.3341 18.0505 25000 0.4209 0.7449 0.7523 0.7400 0.7651
0.3333 18.7726 26000 0.4216 0.7461 0.7602 0.7284 0.7948
0.3323 19.4946 27000 0.4229 0.7431 0.7564 0.7276 0.7876

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
12
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mbzuai-ugrip-statement-tuning/MBERT_revised_2e-06_64_0.1_0.01_110k

Finetuned
(642)
this model