Metrics
MMBench-EN-Test | MMBench-CN-Test | SEEDBench_IMG | |
---|---|---|---|
英文综合 | 中文综合 | 综合能力 | |
GLM-4v-9B | 81.9 | 81.9 | 76.84 |
GLM-4v-9B-gptq-4bit | 81.1 | 80.94 | 76.4 |
GLM-4v-9B-gptq-3bit | 79.8 | 79.2 | 76.0 |
Usage
This model is quantized using AutoGPTQ for THUDM/glm-4v-9b.
It is recommended to install AutoGPTQ by compiling from the source code.
(The quantization script will be released later)
Since the original auto-gptq library does not support the quantization of chatglm models, manual import (hack) is required.
from auto_gptq.modeling._base import BaseGPTQForCausalLM
from auto_gptq.modeling._const import SUPPORTED_MODELS
from auto_gptq.modeling.auto import GPTQ_CAUSAL_LM_MODEL_MAP
class ChatGLMGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = ["GLMBlock", "TransformerLayer", "GLU"]
layers_block_names = ["transformer.encoder.layers",
"transformer.vision.transformer.layers",
"transformer.vision.linear_proj"]
outside_layer_modules = ["transformer.output_layer"]
inside_layer_modules = [
["self_attention.query_key_value", "self_attention.dense", "mlp.dense_h_to_4h", "mlp.dense_4h_to_h"],
["attention.query_key_value", "attention.dense", "mlp.fc1", "mlp.fc2"],
["linear_proj", "dense_h_to_4h", "gate_proj", "dense_4h_to_h"],
]
GPTQ_CAUSAL_LM_MODEL_MAP['chatglm'] = ChatGLMGPTQForCausalLM
SUPPORTED_MODELS = SUPPORTED_MODELS.append('chatglm')
The complete model import code is as follows:
Load model
import os
import json
import random
import time
import torch
import datasets
from transformers import AutoTokenizer, AutoModelForCausalLM
from auto_gptq import AutoGPTQForCausalLM
from auto_gptq.modeling._base import BaseGPTQForCausalLM
from auto_gptq.modeling._const import SUPPORTED_MODELS
from auto_gptq.modeling.auto import GPTQ_CAUSAL_LM_MODEL_MAP
class ChatGLMGPTQForCausalLM(BaseGPTQForCausalLM):
layer_type = ["GLMBlock", "TransformerLayer", "GLU"]
layers_block_names = ["transformer.encoder.layers",
"transformer.vision.transformer.layers",
"transformer.vision.linear_proj"]
outside_layer_modules = ["transformer.output_layer"]
inside_layer_modules = [
["self_attention.query_key_value", "self_attention.dense", "mlp.dense_h_to_4h", "mlp.dense_4h_to_h"],
["attention.query_key_value", "attention.dense", "mlp.fc1", "mlp.fc2"],
["linear_proj", "dense_h_to_4h", "gate_proj", "dense_4h_to_h"],
]
GPTQ_CAUSAL_LM_MODEL_MAP['chatglm'] = ChatGLMGPTQForCausalLM
SUPPORTED_MODELS = SUPPORTED_MODELS.append('chatglm')
device = 'cuda:0'
quantized_model_dir = 'alexwww94/glm-4v-9b-gptq'
trust_remote_code = True
tokenizer = AutoTokenizer.from_pretrained(
quantized_model_dir,
trust_remote_code=trust_remote_code,
)
model = AutoGPTQForCausalLM.from_quantized(
quantized_model_dir,
device=device,
trust_remote_code=trust_remote_code,
torch_dtype=torch.float16,
use_cache=True,
inject_fused_mlp=True,
inject_fused_attention=True,
)
You can also load the model using HuggingFace Transformers.
import os
import json
import random
import time
import torch
import datasets
from transformers import AutoTokenizer, AutoModelForCausalLM
device = 'cuda:0'
quantized_model_dir = 'alexwww94/glm-4v-9b-gptq-4bit'
trust_remote_code = True
tokenizer = AutoTokenizer.from_pretrained(
quantized_model_dir,
trust_remote_code=trust_remote_code,
)
model = AutoModelForCausalLM.from_pretrained(
quantized_model_dir,
torch_dtype=torch.float16,
device_map="auto",
low_cpu_mem_usage=True,
trust_remote_code=trust_remote_code,
use_cache=True
).eval()
inference test
Load the CogVLM-SFT-311K-subset-gptq dataset as test data, which is a dataset for quantization.
dataset = datasets.load_dataset('alexwww94/CogVLM-SFT-311K-subset-gptq')
for example in dataset['single']:
# prompt = "为什么马会被围栏限制在一个区域内?"
prompt = json.loads(example['labels_zh'])['conversations'][0]
answer = json.loads(example['labels_zh'])['conversations'][1]
image = example['image']
print(f"prompt: {prompt}")
print("-" * 42)
print(f"golden: {answer}")
print("-" * 42)
start = time.time()
prompt.update({'image': image})
inputs = tokenizer.apply_chat_template([prompt],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True, dtyp=torch.bfloat16) # chat mode
inputs = inputs.to(device)
inputs['images'] = inputs['images'].half()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.inference_mode():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
generated_text = tokenizer.decode(outputs[0]).split('<|endoftext|>')[0]
end = time.time()
print(f"quant: {generated_text}")
num_new_tokens = len(tokenizer(generated_text)["input_ids"])
print(f"generate {num_new_tokens} tokens using {end-start: .4f}s, {num_new_tokens / (end - start)} tokens/s.")
print("=" * 42)
# break
- Downloads last month
- 8
Model tree for mcavus/glm-4v-9b-gptq-4bit-dynamo
Base model
THUDM/glm-4v-9b