ResNeSt: Split-Attention Networks
Introduction
[ALGORITHM]
@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}
Results and models
Cityscapes
Method |
Backbone |
Crop Size |
Lr schd |
Mem (GB) |
Inf time (fps) |
mIoU |
mIoU(ms+flip) |
download |
FCN |
S-101-D8 |
512x1024 |
80000 |
11.4 |
2.39 |
77.56 |
78.98 |
model | log |
PSPNet |
S-101-D8 |
512x1024 |
80000 |
11.8 |
2.52 |
78.57 |
79.19 |
model | log |
DeepLabV3 |
S-101-D8 |
512x1024 |
80000 |
11.9 |
1.88 |
79.67 |
80.51 |
model | log |
DeepLabV3+ |
S-101-D8 |
512x1024 |
80000 |
13.2 |
2.36 |
79.62 |
80.27 |
model | log |
ADE20k
Method |
Backbone |
Crop Size |
Lr schd |
Mem (GB) |
Inf time (fps) |
mIoU |
mIoU(ms+flip) |
download |
FCN |
S-101-D8 |
512x512 |
160000 |
14.2 |
12.86 |
45.62 |
46.16 |
model | log |
PSPNet |
S-101-D8 |
512x512 |
160000 |
14.2 |
13.02 |
45.44 |
46.28 |
model | log |
DeepLabV3 |
S-101-D8 |
512x512 |
160000 |
14.6 |
9.28 |
45.71 |
46.59 |
model | log |
DeepLabV3+ |
S-101-D8 |
512x512 |
160000 |
16.2 |
11.96 |
46.47 |
47.27 |
model | log |