|
"""pytest tests/test_forward.py.""" |
|
import copy |
|
from os.path import dirname, exists, join |
|
from unittest.mock import patch |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
import torch.nn as nn |
|
from mmcv.utils.parrots_wrapper import SyncBatchNorm, _BatchNorm |
|
|
|
|
|
def _demo_mm_inputs(input_shape=(2, 3, 8, 16), num_classes=10): |
|
"""Create a superset of inputs needed to run test or train batches. |
|
|
|
Args: |
|
input_shape (tuple): |
|
input batch dimensions |
|
|
|
num_classes (int): |
|
number of semantic classes |
|
""" |
|
(N, C, H, W) = input_shape |
|
|
|
rng = np.random.RandomState(0) |
|
|
|
imgs = rng.rand(*input_shape) |
|
segs = rng.randint( |
|
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) |
|
|
|
img_metas = [{ |
|
'img_shape': (H, W, C), |
|
'ori_shape': (H, W, C), |
|
'pad_shape': (H, W, C), |
|
'filename': '<demo>.png', |
|
'scale_factor': 1.0, |
|
'flip': False, |
|
'flip_direction': 'horizontal' |
|
} for _ in range(N)] |
|
|
|
mm_inputs = { |
|
'imgs': torch.FloatTensor(imgs), |
|
'img_metas': img_metas, |
|
'gt_semantic_seg': torch.LongTensor(segs) |
|
} |
|
return mm_inputs |
|
|
|
|
|
def _get_config_directory(): |
|
"""Find the predefined segmentor config directory.""" |
|
try: |
|
|
|
repo_dpath = dirname(dirname(dirname(__file__))) |
|
except NameError: |
|
|
|
import mmseg |
|
repo_dpath = dirname(dirname(dirname(mmseg.__file__))) |
|
config_dpath = join(repo_dpath, 'configs') |
|
if not exists(config_dpath): |
|
raise Exception('Cannot find config path') |
|
return config_dpath |
|
|
|
|
|
def _get_config_module(fname): |
|
"""Load a configuration as a python module.""" |
|
from mmcv import Config |
|
config_dpath = _get_config_directory() |
|
config_fpath = join(config_dpath, fname) |
|
config_mod = Config.fromfile(config_fpath) |
|
return config_mod |
|
|
|
|
|
def _get_segmentor_cfg(fname): |
|
"""Grab configs necessary to create a segmentor. |
|
|
|
These are deep copied to allow for safe modification of parameters without |
|
influencing other tests. |
|
""" |
|
config = _get_config_module(fname) |
|
model = copy.deepcopy(config.model) |
|
return model |
|
|
|
|
|
def test_pspnet_forward(): |
|
_test_encoder_decoder_forward( |
|
'pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_fcn_forward(): |
|
_test_encoder_decoder_forward('fcn/fcn_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_deeplabv3_forward(): |
|
_test_encoder_decoder_forward( |
|
'deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_deeplabv3plus_forward(): |
|
_test_encoder_decoder_forward( |
|
'deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_gcnet_forward(): |
|
_test_encoder_decoder_forward( |
|
'gcnet/gcnet_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_ann_forward(): |
|
_test_encoder_decoder_forward('ann/ann_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_ccnet_forward(): |
|
if not torch.cuda.is_available(): |
|
pytest.skip('CCNet requires CUDA') |
|
_test_encoder_decoder_forward( |
|
'ccnet/ccnet_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_danet_forward(): |
|
_test_encoder_decoder_forward( |
|
'danet/danet_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_nonlocal_net_forward(): |
|
_test_encoder_decoder_forward( |
|
'nonlocal_net/nonlocal_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_upernet_forward(): |
|
_test_encoder_decoder_forward( |
|
'upernet/upernet_r50_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_hrnet_forward(): |
|
_test_encoder_decoder_forward('hrnet/fcn_hr18s_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_ocrnet_forward(): |
|
_test_encoder_decoder_forward( |
|
'ocrnet/ocrnet_hr18s_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_psanet_forward(): |
|
_test_encoder_decoder_forward( |
|
'psanet/psanet_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_encnet_forward(): |
|
_test_encoder_decoder_forward( |
|
'encnet/encnet_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_sem_fpn_forward(): |
|
_test_encoder_decoder_forward('sem_fpn/fpn_r50_512x1024_80k_cityscapes.py') |
|
|
|
|
|
def test_point_rend_forward(): |
|
_test_encoder_decoder_forward( |
|
'point_rend/pointrend_r50_512x1024_80k_cityscapes.py') |
|
|
|
|
|
def test_mobilenet_v2_forward(): |
|
_test_encoder_decoder_forward( |
|
'mobilenet_v2/pspnet_m-v2-d8_512x1024_80k_cityscapes.py') |
|
|
|
|
|
def test_dnlnet_forward(): |
|
_test_encoder_decoder_forward( |
|
'dnlnet/dnl_r50-d8_512x1024_40k_cityscapes.py') |
|
|
|
|
|
def test_emanet_forward(): |
|
_test_encoder_decoder_forward( |
|
'emanet/emanet_r50-d8_512x1024_80k_cityscapes.py') |
|
|
|
|
|
def get_world_size(process_group): |
|
|
|
return 1 |
|
|
|
|
|
def _check_input_dim(self, inputs): |
|
pass |
|
|
|
|
|
def _convert_batchnorm(module): |
|
module_output = module |
|
if isinstance(module, SyncBatchNorm): |
|
|
|
module_output = _BatchNorm(module.num_features, module.eps, |
|
module.momentum, module.affine, |
|
module.track_running_stats) |
|
if module.affine: |
|
module_output.weight.data = module.weight.data.clone().detach() |
|
module_output.bias.data = module.bias.data.clone().detach() |
|
|
|
module_output.weight.requires_grad = module.weight.requires_grad |
|
module_output.bias.requires_grad = module.bias.requires_grad |
|
module_output.running_mean = module.running_mean |
|
module_output.running_var = module.running_var |
|
module_output.num_batches_tracked = module.num_batches_tracked |
|
for name, child in module.named_children(): |
|
module_output.add_module(name, _convert_batchnorm(child)) |
|
del module |
|
return module_output |
|
|
|
|
|
@patch('torch.nn.modules.batchnorm._BatchNorm._check_input_dim', |
|
_check_input_dim) |
|
@patch('torch.distributed.get_world_size', get_world_size) |
|
def _test_encoder_decoder_forward(cfg_file): |
|
model = _get_segmentor_cfg(cfg_file) |
|
model['pretrained'] = None |
|
model['test_cfg']['mode'] = 'whole' |
|
|
|
from mmseg.models import build_segmentor |
|
segmentor = build_segmentor(model) |
|
|
|
if isinstance(segmentor.decode_head, nn.ModuleList): |
|
num_classes = segmentor.decode_head[-1].num_classes |
|
else: |
|
num_classes = segmentor.decode_head.num_classes |
|
|
|
input_shape = (2, 3, 32, 32) |
|
mm_inputs = _demo_mm_inputs(input_shape, num_classes=num_classes) |
|
|
|
imgs = mm_inputs.pop('imgs') |
|
img_metas = mm_inputs.pop('img_metas') |
|
gt_semantic_seg = mm_inputs['gt_semantic_seg'] |
|
|
|
|
|
if torch.cuda.is_available(): |
|
segmentor = segmentor.cuda() |
|
imgs = imgs.cuda() |
|
gt_semantic_seg = gt_semantic_seg.cuda() |
|
else: |
|
segmentor = _convert_batchnorm(segmentor) |
|
|
|
|
|
losses = segmentor.forward( |
|
imgs, img_metas, gt_semantic_seg=gt_semantic_seg, return_loss=True) |
|
assert isinstance(losses, dict) |
|
|
|
|
|
with torch.no_grad(): |
|
segmentor.eval() |
|
|
|
img_list = [img[None, :] for img in imgs] |
|
img_meta_list = [[img_meta] for img_meta in img_metas] |
|
segmentor.forward(img_list, img_meta_list, return_loss=False) |
|
|