A Mistral7B Instruct (https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) Finetune using QLoRA on the docs available in https://docs.modular.com/mojo/

The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets.

Instruction format

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch

device = "cuda" # the device to load the model onto

model_name = "mcysqrd/MODULARMOJO_Mistral_V1"
model = AutoModelForCausalLM.from_pretrained(model_name, 
                                             use_flash_attention_2=True,
                                             max_memory={0: "24GB"},
                                             device_map="auto", 
                                             trust_remote_code=True,
                                             low_cpu_mem_usage=True,
                                             return_dict=True,
                                             torch_dtype=torch.bfloat16,
                                            )
                                            
tokenizer = AutoTokenizer.from_pretrained(model_name,add_bos_token=True,trust_remote_code=True)

model.config.use_cache = True
def stream(user_prompt):
    runtimeFlag = "cuda:0"
    system_prompt = 'MODULAR_MOJO'
    B_INST, E_INST = "[INST]", "[/INST]"
    prompt = f"{system_prompt}{B_INST}{user_prompt.strip()}\n{E_INST}"
    inputs = tokenizer([prompt], return_tensors="pt").to(runtimeFlag)
    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    _ = model.generate(**inputs, streamer=streamer, max_new_tokens=1600)

stream("""can you translate this python code to mojo to make more performant making T as struct?
    class T():
        self.init(v:float):
            self.value=v
    
    def sum_objects(a:T,b:T)->T:
        return T(a.v+b.v)""")
Downloads last month
205
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.