windowz_test / README.md
mdeputy's picture
best_model.pt
96041ee verified
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: windowz_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# windowz_test
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Model Preparation Time: 0.001
- Accuracy: 0.9678
- F1: 0.9630
- Iou: 0.9377
- Loss: 0.1675
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Model Preparation Time | | Validation Loss |
|:-------------:|:------:|:----:|:----------------------:|:------:|:---------------:|
| 1.0939 | 0.0501 | 257 | 0.001 | 0.5935 | 1.0369 |
| 1.0201 | 0.1003 | 514 | 0.001 | 0.6796 | 0.9606 |
| 0.9555 | 0.1504 | 771 | 0.001 | 0.7692 | 0.8134 |
| 0.8988 | 0.2005 | 1028 | 0.001 | 0.8883 | 0.4634 |
| 0.8663 | 0.2507 | 1285 | 0.001 | 0.9029 | 0.3463 |
| 0.8516 | 0.3008 | 1542 | 0.001 | 0.8728 | 0.3075 |
| 0.7798 | 0.3510 | 1799 | 0.001 | 0.9528 | 0.7747 |
| 0.7601 | 0.4011 | 2056 | 0.001 | 0.8082 | 0.5655 |
| 0.7723 | 0.4512 | 2313 | 0.001 | 0.9550 | 0.3013 |
| 0.7258 | 0.5014 | 2570 | 0.001 | 0.9673 | 0.1914 |
| 0.7085 | 0.5515 | 2827 | 0.001 | 0.9377 | 0.1675 |
| 0.7058 | 0.6016 | 3084 | 0.001 | 0.9406 | 0.2294 |
| 0.7008 | 0.6518 | 3341 | 0.001 | 0.9189 | 0.2342 |
| 0.6691 | 0.7019 | 3598 | 0.001 | 0.9404 | 0.2161 |
### Framework versions
- Transformers 4.45.0
- Pytorch 2.5.1+cu124
- Datasets 2.21.0
- Tokenizers 0.20.3