banglat5-finetuned-headlineBT5_1000_WithIp_1
This model is a fine-tuned version of csebuetnlp/banglat5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 5.1889
- Rouge1 Precision: 0.192
- Rouge1 Recall: 0.1481
- Rouge1 Fmeasure: 0.1493
- Rouge2 Precision: 0.034
- Rouge2 Recall: 0.0238
- Rouge2 Fmeasure: 0.0257
- Rougel Precision: 0.1832
- Rougel Recall: 0.1382
- Rougel Fmeasure: 0.1402
- Rouge: {'rouge1_precision': 0.1920136634199134, 'rouge1_recall': 0.14811598124098124, 'rouge1_fmeasure': 0.14925985778926956, 'rouge2_precision': 0.03404265873015873, 'rouge2_recall': 0.023844246031746032, 'rouge2_fmeasure': 0.025712135087135088, 'rougeL_precision': 0.18318429834054833, 'rougeL_recall': 0.13817054473304474, 'rougeL_fmeasure': 0.14016822026013204}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rouge |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.7469 | 1.0 | 160 | 8.0935 | 0.0715 | 0.1039 | 0.0761 | 0.0068 | 0.0122 | 0.0085 | 0.0715 | 0.1039 | 0.0761 | {'rouge1_precision': 0.07145305878761761, 'rouge1_recall': 0.10394435425685425, 'rouge1_fmeasure': 0.07614152865370223, 'rouge2_precision': 0.006805555555555556, 'rouge2_recall': 0.012217261904761904, 'rouge2_fmeasure': 0.008484477124183007, 'rougeL_precision': 0.07145305878761761, 'rougeL_recall': 0.10394435425685425, 'rougeL_fmeasure': 0.07614152865370223} |
8.8874 | 2.0 | 320 | 6.4819 | 0.1136 | 0.1427 | 0.1067 | 0.0217 | 0.0306 | 0.0217 | 0.1129 | 0.1406 | 0.1056 | {'rouge1_precision': 0.11364718738219125, 'rouge1_recall': 0.14271974553224553, 'rouge1_fmeasure': 0.10674004897414845, 'rouge2_precision': 0.02169890873015873, 'rouge2_recall': 0.030600198412698412, 'rouge2_fmeasure': 0.021724970898143597, 'rougeL_precision': 0.11286593738219125, 'rougeL_recall': 0.1406364121989122, 'rougeL_fmeasure': 0.10560368533778482} |
7.5001 | 3.0 | 480 | 5.6537 | 0.1619 | 0.1529 | 0.1379 | 0.0297 | 0.0278 | 0.0251 | 0.1595 | 0.148 | 0.1347 | {'rouge1_precision': 0.16187199952824952, 'rouge1_recall': 0.15293786075036075, 'rouge1_fmeasure': 0.1378562003498065, 'rouge2_precision': 0.029678030303030303, 'rouge2_recall': 0.027787698412698413, 'rouge2_fmeasure': 0.02507508573298047, 'rougeL_precision': 0.15952157217782217, 'rougeL_recall': 0.14802714646464646, 'rougeL_fmeasure': 0.13468312342672956} |
5.9849 | 4.0 | 640 | 5.2887 | 0.1799 | 0.1499 | 0.1427 | 0.0308 | 0.0238 | 0.0241 | 0.1714 | 0.14 | 0.1338 | {'rouge1_precision': 0.17989579864579863, 'rouge1_recall': 0.14991657647907647, 'rouge1_fmeasure': 0.14274962921924997, 'rouge2_precision': 0.030773809523809523, 'rouge2_recall': 0.023844246031746032, 'rouge2_fmeasure': 0.024054670819376702, 'rougeL_precision': 0.1713640526140526, 'rougeL_recall': 0.13997113997113997, 'rougeL_fmeasure': 0.13379535432747508} |
6.7428 | 5.0 | 800 | 5.1889 | 0.192 | 0.1481 | 0.1493 | 0.034 | 0.0238 | 0.0257 | 0.1832 | 0.1382 | 0.1402 | {'rouge1_precision': 0.1920136634199134, 'rouge1_recall': 0.14811598124098124, 'rouge1_fmeasure': 0.14925985778926956, 'rouge2_precision': 0.03404265873015873, 'rouge2_recall': 0.023844246031746032, 'rouge2_fmeasure': 0.025712135087135088, 'rougeL_precision': 0.18318429834054833, 'rougeL_recall': 0.13817054473304474, 'rougeL_fmeasure': 0.14016822026013204} |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mdosama39/banglat5-finetuned-headlineBT5_1000_WithIp_1
Base model
csebuetnlp/banglat5