YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

German sentiment BERT finetuned on news data

Sentiment analysis model based on https://huggingface.co/oliverguhr/german-sentiment-bert, with additional training on German news texts about migration.

This model is part of the project https://github.com/text-analytics-20/news-sentiment-development, which explores sentiment development in German news articles about migration between 2007 and 2019.

Code for inference (predicting sentiment polarity) on raw text can be found at https://github.com/text-analytics-20/news-sentiment-development/blob/main/sentiment_analysis/bert.py

If you are not interested in polarity but just want to predict discrete class labels (0: positive, 1: negative, 2: neutral), you can also use the model with Oliver Guhr's germansentiment package as follows:

First install the package from PyPI:

pip install germansentiment

Then you can use the model in Python:

from germansentiment import SentimentModel

model = SentimentModel('mdraw/german-news-sentiment-bert')

# Examples from our validation dataset
texts = [
    '[...], schwärmt der parteilose Vizebürgermeister und Historiker Christian Matzka von der "tollen Helferszene".',
    'Flüchtlingsheim 11.05 Uhr: Massenschlägerei',
    'Rotterdam habe einen Migrantenanteil von mehr als 50 Prozent.',
]

result = model.predict_sentiment(texts)

print(result)

The code above will print:

['positive', 'negative', 'neutral']
Downloads last month
528
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mdraw/german-news-sentiment-bert

Finetunes
10 models