File size: 14,634 Bytes
af5b29e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb81e5d4a60>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb81e5d4af0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb81e5d4b80>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb81e5d4c10>",
        "_build": "<function ActorCriticPolicy._build at 0x7fb81e5d4ca0>",
        "forward": "<function ActorCriticPolicy.forward at 0x7fb81e5d4d30>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb81e5d4dc0>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb81e5d4e50>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7fb81e5d4ee0>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb81e5d4f70>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb81e5db040>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb81e5db0d0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7fb81e5d6c40>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "num_timesteps": 1015808,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1678872225632116600,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPtJryPtju6TiAss7IE8SmafaS6Uw3PMwAAgD8AAIA/zYznupuz5LyFF929BSLcPORjIT66ZYM9AACAPwAAgD/mnRo+Cd1RPnMSOL5vHZm+tQBSPTVe7bwAAAAAAAAAANCbgL43XS0/q4udPg6K6L4DSyC+spclPgAAAAAAAAAArXK0Pty8Rj9DtOa9UQbXvulPwT6qQjG+AAAAAAAAAADNzfa8qZK8P7FjEb7hsh2+ZgPdPI73IT0AAAAAAAAAAAD4nruuJ7m4wDybt0z9ArMxYM47VzS8NgAAgD8AAIA/ABvAvK5NlroKnM8yzb/yMPl+HziWSqCzAACAPwAAgD/Nn708v5iZP32eED41NBi/Ar2FO6gxfDwAAAAAAAAAAMa0RT4ufn8/f0a6PpAlFL/Rj5I+dIHIPQAAAAAAAAAADSaTvRQGrjkKhGi7mt7DNIsaJ7xOWo46AAAAAAAAgD8apT49SCWPuu4OHTYvmgkxtwEXu+JcQrUAAIA/AACAP6BzFj62d0e8lcsAPo+2SztpEqy9mhIlPAAAgD8AAIA/DU7OvU2Cbz8ShDq9Tt34vh/3Br4eWow8AAAAAAAAAACa4Xu7PChQPjP2Zb4wSY++yusevuTnCL0AAAAAAAAAAJrOWb0P8A4/+mijPfMl2L6PMjg6RgiJPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.015808000000000044,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVMBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1esWgXG0cECUhpRSlIwBbJRL2YwBdJRHQJNTKvOhTOx1fZQoaAZoCWgPQwgQ5nYv98JtQJSGlFKUaBVL2GgWR0CTU6tW+49YdX2UKGgGaAloD0MIRPrt68AYZ0CUhpRSlGgVTegDaBZHQJNTw1cdHUd1fZQoaAZoCWgPQwj9h/TblwtzQJSGlFKUaBVL2WgWR0CTVD0cOskqdX2UKGgGaAloD0MIMXkDzPzNc0CUhpRSlGgVS+toFkdAk1RYppeu3nV9lChoBmgJaA9DCGx3D9B9Z25AlIaUUpRoFUvcaBZHQJNVEtEofCB1fZQoaAZoCWgPQwiPN/ktOmRyQJSGlFKUaBVL22gWR0CTVoVJcxCZdX2UKGgGaAloD0MIdJZZhCLHcECUhpRSlGgVS/loFkdAk1bIHTqjanV9lChoBmgJaA9DCLgDdcqj+2VAlIaUUpRoFU3oA2gWR0CTV/mygPEsdX2UKGgGaAloD0MI9S9JZYqdckCUhpRSlGgVTSsBaBZHQJNYCkRBeHB1fZQoaAZoCWgPQwiuEiwO50ZvQJSGlFKUaBVL6WgWR0CTWJHMEA5rdX2UKGgGaAloD0MIqRd8mhOlb0CUhpRSlGgVS+BoFkdAk1ij2SMcZXV9lChoBmgJaA9DCO/H7ZcPyXFAlIaUUpRoFUvKaBZHQJNZKyRjjJd1fZQoaAZoCWgPQwhQjZdu0iZyQJSGlFKUaBVL8mgWR0CTWarT6SDAdX2UKGgGaAloD0MIvK302qxTcUCUhpRSlGgVS/5oFkdAk1n/duYQa3V9lChoBmgJaA9DCNtrQe8N3nJAlIaUUpRoFUv0aBZHQJNaWl2vB8B1fZQoaAZoCWgPQwhuTbotkVFxQJSGlFKUaBVL72gWR0CTWtlZHNHIdX2UKGgGaAloD0MIRUseTwseckCUhpRSlGgVS/poFkdAk1sC1eBxxXV9lChoBmgJaA9DCH6s4LdhgHJAlIaUUpRoFUvxaBZHQJNbjxd6cAl1fZQoaAZoCWgPQwhs0QK0rYBqQJSGlFKUaBVNLQJoFkdAk1x5VbRne3V9lChoBmgJaA9DCCydD8+SHXNAlIaUUpRoFUvlaBZHQJNciLwWnCR1fZQoaAZoCWgPQwgtXFZhc7BxQJSGlFKUaBVL7mgWR0CTXPOBDohZdX2UKGgGaAloD0MIWrxYGKJgcUCUhpRSlGgVS8xoFkdAk10x3NcGDHV9lChoBmgJaA9DCBgFwePb3W9AlIaUUpRoFUvXaBZHQJNd6r3j+711fZQoaAZoCWgPQwgnvASnvuFwQJSGlFKUaBVL+GgWR0CTXjJF9a2XdX2UKGgGaAloD0MIbjDUYYUzT0CUhpRSlGgVS7hoFkdAk17G2CuloHV9lChoBmgJaA9DCKVL/5JU6W9AlIaUUpRoFUv6aBZHQJNe0qaw2VF1fZQoaAZoCWgPQwjrVzofHktyQJSGlFKUaBVL12gWR0CTXuTKDCgsdX2UKGgGaAloD0MICd0lcRZpcUCUhpRSlGgVS9JoFkdAk18R0U47zXV9lChoBmgJaA9DCHpx4qudWHNAlIaUUpRoFUv3aBZHQJNfLNwBHTZ1fZQoaAZoCWgPQwhdxHdi1m9xQJSGlFKUaBVLwWgWR0CTYBfUF0PpdX2UKGgGaAloD0MIRiV1AhqEbUCUhpRSlGgVS/JoFkdAk2CIyj59E3V9lChoBmgJaA9DCBZQqKdPRnFAlIaUUpRoFUvDaBZHQJNhA9vCMxZ1fZQoaAZoCWgPQwjZzvdTI/lxQJSGlFKUaBVNFgFoFkdAk4wyxu89OnV9lChoBmgJaA9DCH8UdeYeuXFAlIaUUpRoFUvraBZHQJOMs+otL+R1fZQoaAZoCWgPQwixaaUQCBRwQJSGlFKUaBVL02gWR0CTjMxB3RoidX2UKGgGaAloD0MI+1xtxf6JcUCUhpRSlGgVS+1oFkdAk40suzyBkXV9lChoBmgJaA9DCGXFcHVAV3NAlIaUUpRoFUvPaBZHQJONY0dilSF1fZQoaAZoCWgPQwhw0clSa3VlQJSGlFKUaBVN6ANoFkdAk44bGvOhTXV9lChoBmgJaA9DCKDGvfnNonBAlIaUUpRoFUvWaBZHQJOObp2U0N11fZQoaAZoCWgPQwjMJVXbDQlzQJSGlFKUaBVL+mgWR0CTjqngHeJpdX2UKGgGaAloD0MIdhiT/p60cECUhpRSlGgVS+doFkdAk47LWqcVg3V9lChoBmgJaA9DCCr9hLObk3JAlIaUUpRoFUvjaBZHQJOOysaKk2x1fZQoaAZoCWgPQwiCixU12D1wQJSGlFKUaBVNBQFoFkdAk4+hhDw6Q3V9lChoBmgJaA9DCIPCoExjsnFAlIaUUpRoFUvgaBZHQJOP0R/ViF11fZQoaAZoCWgPQwjbFmU2yO5vQJSGlFKUaBVL52gWR0CTkGCqp97XdX2UKGgGaAloD0MIkdCWc2lGcECUhpRSlGgVS/poFkdAk5FSZKFqSHV9lChoBmgJaA9DCANckC3Lr3JAlIaUUpRoFU1KAWgWR0CTkU9Cu2ZzdX2UKGgGaAloD0MINuUK7zJzcECUhpRSlGgVS/JoFkdAk5GkKNQ0oHV9lChoBmgJaA9DCBy3mJ8b1XJAlIaUUpRoFUvqaBZHQJOR6VAzHjp1fZQoaAZoCWgPQwgsZK4MapZyQJSGlFKUaBVL8WgWR0CTkihWHUMHdX2UKGgGaAloD0MIGOsbmNxlb0CUhpRSlGgVS9loFkdAk5I1Vo6CDnV9lChoBmgJaA9DCJ4I4jycAmVAlIaUUpRoFU3oA2gWR0CTkkposZpBdX2UKGgGaAloD0MIl6yKcFOXckCUhpRSlGgVS/9oFkdAk5LNX9zfanV9lChoBmgJaA9DCMy3Pqw3Q3JAlIaUUpRoFUvBaBZHQJOS+ueSSvF1fZQoaAZoCWgPQwgIkQw5NndvQJSGlFKUaBVLzGgWR0CTkxN8E3bVdX2UKGgGaAloD0MIIcztXq5dcUCUhpRSlGgVS91oFkdAk5M0uHvc8HV9lChoBmgJaA9DCBecwd+vO3NAlIaUUpRoFUvwaBZHQJOTUB2fTTh1fZQoaAZoCWgPQwhMjjulwyJwQJSGlFKUaBVL5mgWR0CTk6RnvlU7dX2UKGgGaAloD0MI8+fbgqUyU0CUhpRSlGgVS7hoFkdAk5Q4D9wWFnV9lChoBmgJaA9DCI4FhUGZ2nNAlIaUUpRoFU0GAWgWR0CTlWe2d/aydX2UKGgGaAloD0MIqmIq/UStcUCUhpRSlGgVS9xoFkdAk5X3jyWiUXV9lChoBmgJaA9DCD3TS4yl+3JAlIaUUpRoFUvFaBZHQJOWYGfPHDJ1fZQoaAZoCWgPQwjDYtS1NnZyQJSGlFKUaBVL02gWR0CTlmrAxi5NdX2UKGgGaAloD0MI46qy7wqCcECUhpRSlGgVS/JoFkdAk5aEx7AtWnV9lChoBmgJaA9DCPVjk/xIAHFAlIaUUpRoFUvfaBZHQJOW/McIZ651fZQoaAZoCWgPQwgB3CxebE5yQJSGlFKUaBVNAQFoFkdAk5c/H5rP+nV9lChoBmgJaA9DCJ4/bVQnV3NAlIaUUpRoFUvwaBZHQJOXh4s3AEd1fZQoaAZoCWgPQwgPKnEdo3twQJSGlFKUaBVLzWgWR0CTl5jnFHawdX2UKGgGaAloD0MIWOcYkD3dckCUhpRSlGgVS89oFkdAk5fuxjawlnV9lChoBmgJaA9DCI24ADTKHm9AlIaUUpRoFUvzaBZHQJOYIkJKJ2t1fZQoaAZoCWgPQwhIpdjRuCFuQJSGlFKUaBVL5GgWR0CTmEKlYU35dX2UKGgGaAloD0MIUN8yp8uwckCUhpRSlGgVS+RoFkdAk5jDuBtk4HV9lChoBmgJaA9DCJBOXflsw3JAlIaUUpRoFU0NAWgWR0CTmNmeUY8/dX2UKGgGaAloD0MIr7Mh/0xDcECUhpRSlGgVS+FoFkdAk5lW3fAKv3V9lChoBmgJaA9DCD/iV6xham9AlIaUUpRoFUvcaBZHQJOaasV+I/J1fZQoaAZoCWgPQwipLuBlxrFwQJSGlFKUaBVLyWgWR0CTm5bQTmGNdX2UKGgGaAloD0MIyAc9m9XJbUCUhpRSlGgVS8ZoFkdAk5vK9PDYRXV9lChoBmgJaA9DCE65wrucdnFAlIaUUpRoFU0HAWgWR0CTnC/PgNwzdX2UKGgGaAloD0MILXqnAi6NckCUhpRSlGgVS/ZoFkdAk5w2PtD2J3V9lChoBmgJaA9DCFaeQNhpG3BAlIaUUpRoFU0AAWgWR0CTnHLQXyiFdX2UKGgGaAloD0MI4ugq3d23cUCUhpRSlGgVTQ4BaBZHQJOc4pkPMB91fZQoaAZoCWgPQwhODp904tdzQJSGlFKUaBVNAAFoFkdAk52RQaaTfXV9lChoBmgJaA9DCPD6zFmfJ3JAlIaUUpRoFUv4aBZHQJOd0ahpQDV1fZQoaAZoCWgPQwgcB14td+1yQJSGlFKUaBVNCQFoFkdAk53fIXCTEHV9lChoBmgJaA9DCAq9/iQ+cW9AlIaUUpRoFUvQaBZHQJOd64c3l0Z1fZQoaAZoCWgPQwippE5AE5dwQJSGlFKUaBVL+mgWR0CTnhXYlIEsdX2UKGgGaAloD0MIo3cq4F4OcECUhpRSlGgVS8poFkdAk55Q9q1w53V9lChoBmgJaA9DCIF8CRUcqG9AlIaUUpRoFUvpaBZHQJOeYRVZLZl1fZQoaAZoCWgPQwh6ceKrnQ9yQJSGlFKUaBVNCAFoFkdAk55/OY6XB3V9lChoBmgJaA9DCCB8KNHSiXFAlIaUUpRoFU2kAmgWR0CTnvDwH7gsdX2UKGgGaAloD0MIMqoM427hUkCUhpRSlGgVS6RoFkdAk5++HJtBOnV9lChoBmgJaA9DCPg3aK++EXJAlIaUUpRoFUvlaBZHQJOftW1c+q11fZQoaAZoCWgPQwg1XrpJjKlyQJSGlFKUaBVL12gWR0CToIblRxcWdX2UKGgGaAloD0MICwith69HckCUhpRSlGgVS/JoFkdAk6D0haC+UXV9lChoBmgJaA9DCMucLovJSHFAlIaUUpRoFUvXaBZHQJOhDUMG5c11fZQoaAZoCWgPQwiCyCJNvHluQJSGlFKUaBVL4GgWR0CToQ1MM7U5dX2UKGgGaAloD0MIl/4lqUzgckCUhpRSlGgVS+loFkdAk6G/2kBS1nV9lChoBmgJaA9DCKWkh6GVJ3BAlIaUUpRoFUvdaBZHQJOiE31jAi51fZQoaAZoCWgPQwiCkCxgAu1wQJSGlFKUaBVL12gWR0CTojLbpNbkdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 496,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 8,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}