ppo-LunarLander-v2 / config.json
mehulbhosale's picture
Upload PPO LunarLander-v2 trained agent
124a0e3 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb5587a24d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb5587a2560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb5587a25f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb5587a2680>", "_build": "<function ActorCriticPolicy._build at 0x7bb5587a2710>", "forward": "<function ActorCriticPolicy.forward at 0x7bb5587a27a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb5587a2830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb5587a28c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb5587a2950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb5587a29e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb5587a2a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb5587a2b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb55873ce80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727186468860059759, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAA6Db09+iy7NRRlPCzUizyINUU8/W9xvQAAgD8AAIA/QDHevSvgLD/eGaQ6KY2NviFM+rzyx7W8AAAAAAAAAADADLc9exaiusXXjry9FXc8DgImvJqVVz0AAIA/AAAAAADM67sI0N89hYt1PfOAiL6l/8E80IFwPQAAAAAAAAAA8s+AvvweGT9aiZM9XMuDvjNSu709pSk+AAAAAAAAAAAaLUW+u2ijvEF7Q7wLAZY7394QPtqebLwAAIA/AACAP5MaEb5Os4Y+8uuCPuEdZL7RK1U980N/uwAAAAAAAAAAgGUuPSn6aTtTPfG7mwyevjhdHr16tOS9AAAAAAAAAADmzFg9SIOpugQrDDgRcBEzlpEoOlprILcAAIA/AACAP83sRz2PMhe67cKgupHkprTW6mu7mNa9OQAAgD8AAIA/uqEsvpgItT5affg9RYOYvnoez7zawgy+AAAAAAAAAACz4t09PbonuT4wXbrDEVG2C1hcu94igTkAAIA/AACAP5q9Sryui5M+rSCUvK0Fob48GKu8q7NavQAAAAAAAAAAhtEavlXzLz6TqyY+2g5LvmknkbxdnAW9AAAAAAAAAAAAzCs8uJ7puXGBCrrunqU1+X4Qu8kuHzkAAIA/AACAPxq+FL6+7+c9qjJcPjESY77czeI8yKK+vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDnNOmBOHqMAWyUTWQBjAF0lEdAq88SKJl8PXV9lChoBkdAcYGVrhzeXWgHTSIBaAhHQKvPfDOTq0N1fZQoaAZHQHDSJ7LMcIZoB00+AWgIR0Crz9x3V09ydX2UKGgGR0BNqsx46fapaAdLyGgIR0Cr2sPD50r9dX2UKGgGR0BvDuR9w3o+aAdNBwFoCEdAq9rdJcxCY3V9lChoBkdAckhPikwevWgHTVIBaAhHQKva9iVjZth1fZQoaAZHQHA8ylrM1TBoB00lAWgIR0Cr22C5/b0wdX2UKGgGR0BzG/7DVH4HaAdNKgFoCEdAq91XRJEpiXV9lChoBkdAcB3hZQpF1GgHTXIBaAhHQKvd8CA+Y+l1fZQoaAZHQHIWfpIMBp5oB00vAWgIR0Cr3hvS+g14dX2UKGgGR0Bwy5okAxSHaAdNOwFoCEdAq94x4wAU+XV9lChoBkdAcKLYfW+XaGgHTXoBaAhHQKvedagVXV91fZQoaAZHQHDOaWszVMFoB00KAWgIR0Cr3y7tJFspdX2UKGgGR0Bwh/ZM+NcXaAdNjAFoCEdAq983vnbItHV9lChoBkdAcJpUXpGFz2gHTRgBaAhHQKvf4VX3g1p1fZQoaAZHQHHnxE4Nqg1oB00YAWgIR0Cr4EpaRp1zdX2UKGgGR0Bw4aEdvKlpaAdNDgFoCEdAq+CbX6InB3V9lChoBkdAcjRkXDWK/GgHTc8BaAhHQKvg+ki2Ujd1fZQoaAZHQFm4bpNbkfdoB03oA2gIR0Cr4Qxhc7hfdX2UKGgGR0BzWELG7z06aAdNVgFoCEdAq+H+WnjyWnV9lChoBkdAcCgZ9NN8E2gHTQMBaAhHQKviNq+rU9Z1fZQoaAZHQHJQhUedTYNoB01bAWgIR0Cr4m9Mj/uLdX2UKGgGR0Bx9pNFjNILaAdL9mgIR0Cr4nzakAPvdX2UKGgGR0ByeUw482aVaAdL32gIR0Cr4yJjDsMRdX2UKGgGR0Bwaa2oegctaAdNKgFoCEdAq+OE2zfJm3V9lChoBkdAcPJTcqOLi2gHTbcBaAhHQKvjkoE0SAZ1fZQoaAZHQHHN+FL39JloB00RAWgIR0Cr5QC48U22dX2UKGgGR0ByCa1ndweeaAdNUwFoCEdAq+UhrrPdEnV9lChoBkdAbc/PE87p3WgHTTgBaAhHQKvlWtnwob51fZQoaAZHQHAdsjzI3itoB00hAWgIR0Cr5ayPuG9IdX2UKGgGR0BzcIMI/qxDaAdNoQFoCEdAq+XmEh7mdXV9lChoBkdAUN5G+bmU4mgHS8xoCEdAq+YNIy0rsnV9lChoBkdAcPYIv8IiT2gHTSMBaAhHQKvmE9zwMH91fZQoaAZHQHLK4An2IwdoB0v6aAhHQKvmkX8fmtB1fZQoaAZHQFFMjM3ZPEdoB0vRaAhHQKvmyVM23rl1fZQoaAZHQG7l0Wl/H5toB01LAWgIR0Cr5sqziS7odX2UKGgGR0BxsZJ2+wkgaAdN9wFoCEdAq+cGwgTyrnV9lChoBkdAcMV/ZuhsZmgHTRsBaAhHQKvnQBV+7UZ1fZQoaAZHQHK3GhufmLdoB01uAWgIR0Cr6CZj6N2ldX2UKGgGR0Bwsv2bobGWaAdNJQFoCEdAq+ho9vCMxXV9lChoBkdAbfVl8PWhAWgHTSIBaAhHQKvobDYRNAV1fZQoaAZHQHC4KhUR3/xoB0v5aAhHQKvpBWyTpxF1fZQoaAZHQHGKkDQqqfhoB0v4aAhHQKvpRy8zyjJ1fZQoaAZHQGMVGEf1YhdoB03oA2gIR0Cr6agf2bobdX2UKGgGR0BuMT2alUIcaAdNNQFoCEdAq+oYQlKK53V9lChoBkdAcCkHGS6lL2gHTScBaAhHQKvqVEQXhwV1fZQoaAZHQHB4bY02tMhoB00pAWgIR0Cr6peK0lZ6dX2UKGgGR0BrxMZpBX0YaAdNBgFoCEdAq+roYP5HmXV9lChoBkdAcmmDLKV6eGgHTUUBaAhHQKvrN9ETg2t1fZQoaAZHQErF114gRsdoB0vMaAhHQKvrv7l7tzF1fZQoaAZHQHFgbWI42jxoB00/AWgIR0Cr6+PEjxCqdX2UKGgGR0Bwq4M1CPZJaAdNPwFoCEdAq+wpXuE253V9lChoBkdAbPPS4OMER2gHTYABaAhHQKvszMW43FV1fZQoaAZHQHC594eLehxoB01YAWgIR0Cr7OIOpbUxdX2UKGgGR0BrfyOo5xR3aAdNJQFoCEdAq/lDeO4oZ3V9lChoBkdAbTHwd8zAOGgHTSEBaAhHQKv5nL5AQg91fZQoaAZHQG2tYBeXzDpoB03TAWgIR0Cr+kWqDK5kdX2UKGgGR0Bsj8J6Y3NtaAdNOQFoCEdAq/vGkcjqwHV9lChoBkdAcSoWtU4rBmgHTTIBaAhHQKv8DfHggox1fZQoaAZHQHFzO3pfQa9oB01dAWgIR0Cr/BoFmnO0dX2UKGgGR0Bvs6iXY150aAdNIQFoCEdAq/wyBRQ793V9lChoBkdAcEdHiWE9MmgHTSUBaAhHQKv8dWbPQfJ1fZQoaAZHQG4c+SjgydpoB00bAWgIR0Cr/NgAyVOcdX2UKGgGR0Bti+/vfCQ+aAdNTQFoCEdAq/1XBzmwJXV9lChoBkdAbZNopQUHp2gHTQ4BaAhHQKv9cb6P8yh1fZQoaAZHQHGWVuR9w3poB00IAWgIR0Cr/XlolD4QdX2UKGgGR0Bwz5uwX668aAdNWAFoCEdAq/4bMLWqcXV9lChoBkdAcTjCBPKuCGgHTS4BaAhHQKv+SWv8qF11fZQoaAZHQHL+ElAu7H1oB00mAWgIR0Cr/rk+HJtBdX2UKGgGR0BxAioUBXCCaAdNJAFoCEdAq/8XmxMWXXV9lChoBkdAcdObcXWOImgHTTYBaAhHQKv/LP557gN1fZQoaAZHQG6HA6EJ0GNoB00UAWgIR0Cr/zx3mmtRdX2UKGgGR0Bt5Kl54W1uaAdNTAFoCEdAq/9bYI0IknV9lChoBkdAb6XvCuU2UGgHTRIBaAhHQKwAVRLsa891fZQoaAZHQHFTHUc4o7VoB00oAWgIR0CsAIlyq+8HdX2UKGgGR0BwqZZdOZb7aAdNKAFoCEdArACUaCL/CXV9lChoBkdAcniW07bL2mgHTVQBaAhHQKwA9m/336B1fZQoaAZHQG3j/sNUfgdoB00hAWgIR0CsAeieumrKdX2UKGgGR0BzGSkAPuohaAdNXgFoCEdArAHlqk/KQ3V9lChoBkdAcdl2AXl8xGgHTUgBaAhHQKwB76nBLwp1fZQoaAZHQHGhJ0OmR/5oB01WAWgIR0CsAqv1+RYBdX2UKGgGR0Byr6WdEsreaAdNKAFoCEdArALt8CxNZnV9lChoBkdAcgn7uDzy0GgHTTQBaAhHQKwC8QZn+Q51fZQoaAZHQHHFnlXA/LVoB00OAWgIR0CsA4loUSIydX2UKGgGR0BviexdIGyHaAdNOAFoCEdArARI9C/oJXV9lChoBkdAcXnszEaVEGgHTUEBaAhHQKwEWfcvduZ1fZQoaAZHQG47XbM5fdBoB00MAWgIR0CsBQVlPJq7dX2UKGgGR0Bwr+rKeTV2aAdNDAFoCEdArAVEnuy/sXV9lChoBkdAcmFCxu89OmgHTa8BaAhHQKwG5TS9du51fZQoaAZHQHIYhsZYPoVoB00MAWgIR0CsBu9nCfpVdX2UKGgGR0BtpDCk43m3aAdNDwFoCEdArAcGd9Ujs3V9lChoBkdAcVRnw5NoJ2gHTXABaAhHQKwH3rULDyh1fZQoaAZHv9sZTAFgUlBoB0vqaAhHQKwIMuL74zt1fZQoaAZHQHF5AUUO/cpoB02lAWgIR0CsCHJnQID6dX2UKGgGR0Bw7FeWv8qGaAdNNAFoCEdArAitK9PDYXV9lChoBkdAcH0wSrYGuGgHTXkBaAhHQKwJF8XN1Qt1fZQoaAZHQG8icCPp6hRoB01IAWgIR0CsCVRcE/0NdX2UKGgGR0ByiA371qWUaAdNAgFoCEdArAlezF+/g3V9lChoBkdAcIUmF8G9pWgHTSQBaAhHQKwKAOx0MgF1fZQoaAZHQG2tXqiXY15oB013AWgIR0CsChun/DLsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}