mekjr1's picture
End of training
0ac2bde verified
---
license: gemma
library_name: peft
tags:
- generated_from_trainer
base_model: google/gemma-2b-it
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: gemma-ai-detect-v3-multilingual
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma-ai-detect-v3-multilingual
This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1267
- Accuracy: 0.9737
- F1: 0.9787
- Precision: 0.9802
- Recall: 0.9772
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 56
- eval_batch_size: 56
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.1048 | 1.0 | 1072 | 0.0781 | 0.9691 | 0.9751 | 0.9734 | 0.9767 |
| 0.0373 | 2.0 | 2144 | 0.0925 | 0.9701 | 0.9757 | 0.9817 | 0.9698 |
| 0.0073 | 3.0 | 3216 | 0.1267 | 0.9737 | 0.9787 | 0.9802 | 0.9772 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.5.1+cu124
- Datasets 2.18.0
- Tokenizers 0.19.1