File size: 4,194 Bytes
ca844a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73cf446
ca844a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73cf446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca844a3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
tags:
- generated_from_trainer
model-index:
- name: TCS_Pair
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# TCS_Pair

This model is a fine-tuned version of [mgh6/esm_cluster_35M_linear](https://huggingface.co/mgh6/esm_cluster_35M_linear) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1515

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 80
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1694        | 0.13  | 100  | 0.1876          |
| 0.1104        | 0.27  | 200  | 0.1856          |
| 0.0976        | 0.4   | 300  | 0.2082          |
| 0.0858        | 0.54  | 400  | 0.1908          |
| 0.0832        | 0.67  | 500  | 0.1575          |
| 0.0853        | 0.81  | 600  | 0.1549          |
| 0.0788        | 0.94  | 700  | 0.1598          |
| 0.0629        | 1.07  | 800  | 0.1386          |
| 0.0579        | 1.21  | 900  | 0.2071          |
| 0.0571        | 1.34  | 1000 | 0.1667          |
| 0.0567        | 1.48  | 1100 | 0.1421          |
| 0.0527        | 1.61  | 1200 | 0.1623          |
| 0.0553        | 1.74  | 1300 | 0.1827          |
| 0.0557        | 1.88  | 1400 | 0.1535          |
| 0.0523        | 2.01  | 1500 | 0.1353          |
| 0.0358        | 2.15  | 1600 | 0.1409          |
| 0.041         | 2.28  | 1700 | 0.1502          |
| 0.042         | 2.42  | 1800 | 0.1427          |
| 0.04          | 2.55  | 1900 | 0.1505          |
| 0.04          | 2.68  | 2000 | 0.1366          |
| 0.0392        | 2.82  | 2100 | 0.1236          |
| 0.0409        | 2.95  | 2200 | 0.1210          |
| 0.0327        | 3.09  | 2300 | 0.1448          |
| 0.0293        | 3.22  | 2400 | 0.1535          |
| 0.0265        | 3.36  | 2500 | 0.1529          |
| 0.0268        | 3.49  | 2600 | 0.1557          |
| 0.0241        | 3.62  | 2700 | 0.1505          |
| 0.0264        | 3.76  | 2800 | 0.1447          |
| 0.0286        | 3.89  | 2900 | 0.1442          |
| 0.0306        | 4.03  | 3000 | 0.1504          |
| 0.0152        | 4.16  | 3100 | 0.1311          |
| 0.0185        | 4.3   | 3200 | 0.1873          |
| 0.0212        | 4.43  | 3300 | 0.1396          |
| 0.022         | 4.56  | 3400 | 0.1663          |
| 0.0206        | 4.7   | 3500 | 0.1443          |
| 0.0231        | 4.83  | 3600 | 0.1483          |
| 0.0172        | 4.97  | 3700 | 0.1413          |
| 0.0134        | 5.1   | 3800 | 0.1472          |
| 0.0129        | 5.23  | 3900 | 0.1442          |
| 0.0126        | 5.37  | 4000 | 0.1369          |
| 0.013         | 5.5   | 4100 | 0.1576          |
| 0.012         | 5.64  | 4200 | 0.1348          |
| 0.013         | 5.77  | 4300 | 0.1572          |
| 0.0123        | 5.91  | 4400 | 0.1529          |
| 0.0099        | 6.04  | 4500 | 0.1425          |
| 0.0072        | 6.17  | 4600 | 0.1540          |
| 0.0081        | 6.31  | 4700 | 0.1463          |
| 0.0075        | 6.44  | 4800 | 0.1540          |
| 0.0078        | 6.58  | 4900 | 0.1418          |
| 0.0062        | 6.71  | 5000 | 0.1640          |
| 0.0062        | 6.85  | 5100 | 0.1392          |
| 0.0068        | 6.98  | 5200 | 0.1572          |
| 0.0054        | 7.11  | 5300 | 0.1485          |
| 0.0046        | 7.25  | 5400 | 0.1445          |
| 0.0054        | 7.38  | 5500 | 0.1488          |
| 0.0033        | 7.52  | 5600 | 0.1478          |
| 0.0041        | 7.65  | 5700 | 0.1514          |
| 0.0044        | 7.79  | 5800 | 0.1508          |
| 0.0025        | 7.92  | 5900 | 0.1515          |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3