TCS_Pair / README.md
mgh6's picture
update model card README.md
73cf446
metadata
tags:
  - generated_from_trainer
model-index:
  - name: TCS_Pair
    results: []

TCS_Pair

This model is a fine-tuned version of mgh6/esm_cluster_35M_linear on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1515

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 80
  • eval_batch_size: 80
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss
0.1694 0.13 100 0.1876
0.1104 0.27 200 0.1856
0.0976 0.4 300 0.2082
0.0858 0.54 400 0.1908
0.0832 0.67 500 0.1575
0.0853 0.81 600 0.1549
0.0788 0.94 700 0.1598
0.0629 1.07 800 0.1386
0.0579 1.21 900 0.2071
0.0571 1.34 1000 0.1667
0.0567 1.48 1100 0.1421
0.0527 1.61 1200 0.1623
0.0553 1.74 1300 0.1827
0.0557 1.88 1400 0.1535
0.0523 2.01 1500 0.1353
0.0358 2.15 1600 0.1409
0.041 2.28 1700 0.1502
0.042 2.42 1800 0.1427
0.04 2.55 1900 0.1505
0.04 2.68 2000 0.1366
0.0392 2.82 2100 0.1236
0.0409 2.95 2200 0.1210
0.0327 3.09 2300 0.1448
0.0293 3.22 2400 0.1535
0.0265 3.36 2500 0.1529
0.0268 3.49 2600 0.1557
0.0241 3.62 2700 0.1505
0.0264 3.76 2800 0.1447
0.0286 3.89 2900 0.1442
0.0306 4.03 3000 0.1504
0.0152 4.16 3100 0.1311
0.0185 4.3 3200 0.1873
0.0212 4.43 3300 0.1396
0.022 4.56 3400 0.1663
0.0206 4.7 3500 0.1443
0.0231 4.83 3600 0.1483
0.0172 4.97 3700 0.1413
0.0134 5.1 3800 0.1472
0.0129 5.23 3900 0.1442
0.0126 5.37 4000 0.1369
0.013 5.5 4100 0.1576
0.012 5.64 4200 0.1348
0.013 5.77 4300 0.1572
0.0123 5.91 4400 0.1529
0.0099 6.04 4500 0.1425
0.0072 6.17 4600 0.1540
0.0081 6.31 4700 0.1463
0.0075 6.44 4800 0.1540
0.0078 6.58 4900 0.1418
0.0062 6.71 5000 0.1640
0.0062 6.85 5100 0.1392
0.0068 6.98 5200 0.1572
0.0054 7.11 5300 0.1485
0.0046 7.25 5400 0.1445
0.0054 7.38 5500 0.1488
0.0033 7.52 5600 0.1478
0.0041 7.65 5700 0.1514
0.0044 7.79 5800 0.1508
0.0025 7.92 5900 0.1515

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3