Llama 3 8B Instruct that has been compressed in one-shot to 50% sparsity and INT8 weights+activations using SparseGPT, SmoothQuant, and GPTQ.
Made with SparseML+DeepSparse=1.7. Install with pip install deepsparse~=1.7 "sparseml[transformers]"~=1.7 "numpy<2"
.
Here is the script used for SparseML compression:
from datasets import load_dataset
from sparseml.transformers import (
SparseAutoModelForCausalLM,
SparseAutoTokenizer,
load_dataset,
compress,
)
model = SparseAutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto"
)
tokenizer = SparseAutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
dataset = load_dataset("garage-bAInd/Open-Platypus")
def format_data(data):
instruction = tokenizer.apply_chat_template(
[{"role": "user", "content": data["instruction"]}],
tokenize=False,
add_generation_prompt=True,
)
return {"text": instruction + data["output"]}
dataset = dataset.map(format_data)
recipe = """
compression_stage:
run_type: oneshot
oneshot_modifiers:
QuantizationModifier:
ignore:
# These operations don't make sense to quantize
- LlamaRotaryEmbedding
- LlamaRMSNorm
- SiLUActivation
- QuantizableMatMul
# Skip quantizing the layers with the most sensitive activations
- model.layers.1.mlp.down_proj
- model.layers.31.mlp.down_proj
- model.layers.14.self_attn.q_proj
- model.layers.14.self_attn.k_proj
- model.layers.14.self_attn.v_proj
post_oneshot_calibration: true
scheme_overrides:
# Enable channelwise quantization for better accuracy
Linear:
weights:
num_bits: 8
symmetric: true
strategy: channel
# For the embeddings, only weight-quantization makes sense
Embedding:
input_activations: null
weights:
num_bits: 8
symmetric: false
SparseGPTModifier:
sparsity: 0.5
quantize: True
targets: ['re:model.layers.\\d*$']
"""
compress(
model=model,
tokenizer=tokenizer,
dataset=dataset,
recipe=recipe,
output_dir="./one-shot-checkpoint",
)
- Downloads last month
- 40
Model tree for mgoin/Meta-Llama-3-8B-Instruct-pruned50-quant-ds
Base model
meta-llama/Meta-Llama-3-8B-Instruct