metadata
language: pt
license: mit
tags:
- question-answering
- bert
- bert-large
- pytorch
datasets:
- autogenerated
metrics:
- squad
widget:
- text: Lucas Vázquez Iglesias ana miaka mingapi?
context: >-
Lucas Vázquez Iglesias (aliyezaliwa 1 Julai 1991) ni mchezaji wa soka wa
Hispania ambaye anachezea klabu ya Real Madrid na timu ya taifa ya
Hispania kama winga wa kulia.
- text: Emil von Zelewski aliuawa katika vita gani?
context: >-
Emil von Zelewski (13 Machi 1854 - 1891) alikuwa afisa wa jeshi la
Ujerumani. Alipokuwa kamanda ya kwanza wa jeshi la ulinzi la kikoloni
katika Afrika ya Mashariki ya Kijerumani aliongoza jeshi hilo katika vita
dhidi ya Wahehe alipouawa.
Swahili MCR & QA: a Swahili Machine Reading Comprehension and Question Answering model
Table of Contents
Model Details
- Model Description: This is the first Swahili MCR Question Answering Model. It is now available on Hugging Face.
- Developed by: Mohamed Gudle.
- Model Type: Fine-tuned Question Answering
- Language(s): Swahili
- Parent Model: See the bert-base-multilingual-uncased for more information .
- Resources for more information:
Uses
Direct Use
This model can be used for Machine Reading and Question Answering tasks.
Risks, Limitations and Biases
mgudle/bert-finetuned-swahili_qa
This model is a fine-tuned version of bert-base-multilingual-uncased on mgudle/swahili_qa dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3585
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1023, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Epoch |
---|---|
1.1602 | 0 |
0.5513 | 1 |
0.3585 | 2 |
Framework versions
- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1