image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2966
  • Accuracy: 0.525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.4307 0.475
No log 2.0 80 1.3231 0.5125
No log 3.0 120 1.3044 0.5437
No log 4.0 160 1.3204 0.525
No log 5.0 200 1.2457 0.5875
No log 6.0 240 1.3604 0.5125
No log 7.0 280 1.2296 0.5813
No log 8.0 320 1.3598 0.525
No log 9.0 360 1.3343 0.5188
No log 10.0 400 1.4003 0.5625
No log 11.0 440 1.3580 0.5563
No log 12.0 480 1.3214 0.5687
0.4908 13.0 520 1.3713 0.5312
0.4908 14.0 560 1.3820 0.55
0.4908 15.0 600 1.3384 0.5813
0.4908 16.0 640 1.4905 0.5375
0.4908 17.0 680 1.3985 0.5687
0.4908 18.0 720 1.4733 0.5312
0.4908 19.0 760 1.3403 0.5813
0.4908 20.0 800 1.3991 0.5563

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mhasnanr/image_classification

Finetuned
(1791)
this model

Evaluation results