# Fast-Inference with Ctranslate2

Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.

quantized version of OpenAssistant/pythia-12b-sft-v8-7k-steps

pip install hf-hub-ctranslate2>=2.0.6 

Converted on 2023-05-19 using

ct2-transformers-converter --model OpenAssistant/pythia-12b-sft-v8-7k-steps --output_dir /home/feil_m/tmp-ct2fast-pythia-12b-sft-v8-7k-steps --force --copy_files tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization float16

Checkpoint compatible to ctranslate2>=3.13.0 and hf-hub-ctranslate2>=2.0.6

  • compute_type=int8_float16 for device="cuda"
  • compute_type=int8 for device="cpu"
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
from transformers import AutoTokenizer

model_name = "michaelfeil/ct2fast-pythia-12b-sft-v8-7k-steps"
# use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model.
model = GeneratorCT2fromHfHub(
        # load in int8 on CUDA
        model_name_or_path=model_name, 
        device="cuda",
        compute_type="int8_float16",
        tokenizer=AutoTokenizer.from_pretrained("OpenAssistant/pythia-12b-sft-v8-7k-steps")
)
outputs = model.generate(
    text=["How do you call a fast Flan-ingo?", "User: How are you doing? Bot:"],
)
print(outputs)

Licence and other remarks:

This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.

Original description

pythia-12b-sft-8:
  dtype: fp16
  log_dir: "pythia_log_12b"
  learning_rate: 6e-6
  model_name: OpenAssistant/pythia-12b-pre-v8-12.5k-steps
  output_dir: pythia_model_12b
  weight_decay: 0.0
  residual_dropout: 0.0
  max_length: 2048
  use_flash_attention: true
  warmup_steps: 100
  gradient_checkpointing: true
  gradient_accumulation_steps: 2
  per_device_train_batch_size: 4
  per_device_eval_batch_size: 4
  eval_steps: 251
  save_steps: 500
  num_train_epochs: 8
  save_total_limit: 4
  num_train_epochs: 8
  save_total_limit: 3
  use_custom_sampler: true
  sort_by_length: false
  save_strategy: steps
  datasets:
    - oasst_export:
        lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
        input_file_path: 2023-05-06_OASST_labels.jsonl.gz
        val_split: 0.05
    - vicuna:
        val_split: 0.05
        max_val_set: 800
        fraction: 0.4
    - dolly15k:
        val_split: 0.05
        max_val_set: 300
    - grade_school_math_instructions:
        val_split: 0.05
    - code_alpaca:
        val_split: 0.05
        max_val_set: 250
    - red_pajama:
        fraction: 0.05
        max_val_set: 1000
    - wizardlm_70k:
        val_split: 0.05
        max_val_set: 500
        fraction: 0.4
    - poem_instructions:
        fraction: 0.5
        val_split: 0.025
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.