|
--- |
|
license: apache-2.0 |
|
language: en |
|
datasets: |
|
- sst2 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
tags: |
|
- text-classification |
|
--- |
|
|
|
# T5-base fine-tuned for Sentiment Analysis ππ |
|
|
|
|
|
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) base fine-tuned on [SST-2](https://huggingface.co/datasets/st2) dataset for **Sentiment Analysis** downstream task. |
|
|
|
## Details of T5 |
|
|
|
The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* |
|
|
|
## Model fine-tuning ποΈβ |
|
|
|
The model has been finetuned for 10 epochs on standard hyperparameters |
|
|
|
|
|
## Val set metrics π§Ύ |
|
|
|
|precision | recall | f1-score |support| |
|
|----------|----------|---------|----------|-------| |
|
|negative | 0.95 | 0.95| 0.95| 428 | |
|
|positive | 0.94 | 0.96| 0.95| 444 | |
|
|----------|----------|---------|----------|-------| |
|
|accuracy| | | 0.95| 872 | |
|
|macro avg| 0.95| 0.95| 0.95| 872 | |
|
|weighted avg| 0.95| 0.95| 0.95 | 872 | |
|
|
|
|
|
## Model in Action π |
|
|
|
```python |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
tokenizer = T5Tokenizer.from_pretrained("t5-finetune-sst2") |
|
model = T5ForConditionalGeneration.from_pretrained("t5-finetune-sst2") |
|
|
|
def get_sentiment(text): |
|
|
|
inputs = tokenizer("sentiment: " + text, max_length=128, truncation=True, return_tensors="pt").input_ids |
|
preds = model.generate(inputs) |
|
decoded_preds = tokenizer.batch_decode(sequences=preds, skip_special_tokens=True) |
|
|
|
return decoded_preds |
|
|
|
get_sentiment("This movie is awesome") |
|
|
|
# labels are 'p' for 'positive' and 'n' for 'negative' |
|
# Output: ['p'] |
|
``` |
|
|
|
> This model card is based on "mrm8488/t5-base-finetuned-imdb-sentiment" by Manuel Romero/@mrm8488 |
|
|