File size: 24,365 Bytes
073038f 904060b 073038f a0ecd43 073038f 05f620b 073038f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 |
import argparse
import numpy as np
import onnx
import onnxruntime as ort
import onnxscript
import os
import requests
import shutil
import soundfile
import subprocess
import sys
import torch
from onnx import helper, numpy_helper, TensorProto
from onnxruntime_genai.models.builder import create_model
from onnxruntime.transformers.dynamo_onnx_helper import DynamoOnnxHelper
from onnxscript import ir
from PIL import Image
from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM
def build_vision(args):
# Many images:
prompt = f"{user_prompt}<|image_1|>\n<|image_2|>\n<|image_3|>\n<|image_4|>\nWhat is shown in these four images?{prompt_suffix}{assistant_prompt}"
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
image_1 = Image.open(requests.get(url, stream=True).raw)
url = "https://img.freepik.com/free-photo/painting-mountain-lake-with-mountain-background_188544-9126.jpg?w=2000"
image_2 = Image.open(requests.get(url, stream=True).raw)
url = "https://th.bing.com/th/id/OIP.gCvQ1vmPVJmrq1nnzM3ZHQHaEo?rs=1&pid=ImgDetMain"
image_3 = Image.open(requests.get(url, stream=True).raw)
url = "https://wallpaper.dog/large/10809054.jpg"
image_4 = Image.open(requests.get(url, stream=True).raw)
images = [image_1, image_2, image_3, image_4]
inputs = processor(prompt, images=images, return_tensors="pt").to(args.execution_provider.replace("dml", "cuda"))
inputs["input_image_embeds"] = inputs["input_image_embeds"].to(args.precision)
inputs["image_attention_mask"] = inputs["image_attention_mask"].to(args.precision)
# TorchScript export
dummy_inputs = (
inputs["input_image_embeds"], # image_embeds: torch.FloatTensor
inputs["image_attention_mask"], # image_attention_mask: torch.FloatTensor
inputs["image_sizes"], # image_sizes: torch.LongTensor
)
dynamic_axes = {
"pixel_values": {0: "num_images", 1: "max_num_crops", 3: "height", 4: "width"},
"image_attention_mask": {0: "num_images", 1: "max_num_crops"},
"image_sizes": {0: "num_images"},
"image_features": {0: "num_image_tokens"},
}
filename = "phi-4-mm-vision.onnx"
temp_folder_1 = os.path.join(args.output, "vision_init_export")
os.makedirs(temp_folder_1, exist_ok=True)
fpath_1 = os.path.join(temp_folder_1, filename)
torch.onnx.export(
model.model.embed_tokens_extend.image_embed,
args=dummy_inputs,
f=fpath_1,
export_params=True,
input_names=["pixel_values", "image_attention_mask", "image_sizes"],
output_names=["image_features"],
dynamic_axes=dynamic_axes,
opset_version=14,
do_constant_folding=True,
)
onnx.checker.check_model(fpath_1)
onnx.shape_inference.infer_shapes_path(fpath_1)
onnx_model = onnx.load_model(fpath_1, load_external_data=True)
temp_folder_2 = os.path.join(args.output, "vision_after_export")
os.makedirs(temp_folder_2, exist_ok=True)
fpath_2 = os.path.join(temp_folder_2, filename)
onnx.save_model(
onnx_model,
fpath_2,
save_as_external_data=True,
all_tensors_to_one_file=True,
location=f"{filename}.data",
size_threshold=0,
convert_attribute=False,
)
shutil.rmtree(temp_folder_1)
# ORT transformer optimizer
temp_folder_3 = os.path.join(args.output, "vision_after_opt")
fpath_3 = os.path.join(temp_folder_3, filename)
subprocess.run(
[
f"{sys.executable}", "-m", "onnxruntime.transformers.optimizer",
"--input", fpath_2,
"--output", fpath_3,
"--model_type", "clip",
"--num_heads", str(16),
"--hidden_size", str(1152),
"--use_external_data_format",
"--opt_level", str(0),
"--disable_shape_inference",
]
)
shutil.rmtree(temp_folder_2)
# ORT 4-bits quantizer
fpath_4 = os.path.join(args.output, filename)
cmd = [
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
"--input_model", fpath_3,
"--output_model", fpath_4,
"--block_size", str(32),
]
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
subprocess.run(cmd)
shutil.rmtree(temp_folder_3)
def build_speech(args):
# Speech file:
prompt = f"{user_prompt}<|audio_1|>\n<|audio_2|>\nWhat are the stories that these audios come from?{prompt_suffix}{assistant_prompt}"
audio1 = soundfile.read(os.path.join(args.input, "examples", "what_is_the_traffic_sign_in_the_image.wav"))
audio2 = soundfile.read(os.path.join(args.input, "examples", "what_is_shown_in_this_image.wav"))
inputs = processor(prompt, audios=[audio1, audio2], return_tensors="pt").to(args.execution_provider.replace("dml", "cuda"))
inputs["input_audio_embeds"] = inputs["input_audio_embeds"].to(args.precision)
# TorchScript export
dummy_inputs = (
inputs["input_audio_embeds"], # audio_embeds: torch.FloatTensor
inputs["audio_attention_mask"], # audio_attention_mask: torch.BoolTensor
inputs["audio_embed_sizes"], # audio_sizes: torch.LongTensor
inputs["input_mode"], # audio_projection_mode: int
)
dynamic_axes = {
"audio_embeds": {0: "num_audios", 1: "num_frames", 2: "feature_size"},
"audio_attention_mask": {0: "num_audios", 1: "num_frames"},
"audio_sizes": {0: "num_audios"},
"audio_features": {0: "num_audio_tokens"},
}
filename = "phi-4-mm-speech.onnx"
temp_folder_1 = os.path.join(args.output, "speech_init_export")
os.makedirs(temp_folder_1, exist_ok=True)
fpath_1 = os.path.join(temp_folder_1, filename)
torch._dynamo.config.capture_scalar_outputs = True
ep = torch.export.export(
model.model.embed_tokens_extend.audio_embed, args=dummy_inputs, strict=False,
dynamic_shapes=[
{0: torch.export.Dim.AUTO, 1: torch.export.Dim.AUTO, 2: torch.export.Dim.AUTO},
{0: torch.export.Dim.AUTO, 1: torch.export.Dim.AUTO},
{0: torch.export.Dim.AUTO},
{0: torch.export.Dim.AUTO},
]
)
onnx_program = torch.onnx.export(ep, (), input_names=["audio_embeds", "audio_attention_mask", "audio_sizes", "audio_projection_mode"], output_names=["audio_features"])
onnx_program.optimize()
onnx_program.save(fpath_1, external_data=True)
onnx.checker.check_model(fpath_1)
onnx.shape_inference.infer_shapes_path(fpath_1)
onnx_model = onnx.load_model(fpath_1, load_external_data=True)
temp_folder_2 = os.path.join(args.output, "speech_after_export")
os.makedirs(temp_folder_2, exist_ok=True)
fpath_2 = os.path.join(temp_folder_2, filename)
onnx.save_model(
onnx_model,
fpath_2,
save_as_external_data=True,
all_tensors_to_one_file=True,
location=f"{filename}.data",
size_threshold=0,
convert_attribute=False,
)
shutil.rmtree(temp_folder_1)
# ONNX/ORT rewriter
temp_folder_3 = os.path.join(args.output, "speech_after_rewrite")
os.makedirs(temp_folder_3, exist_ok=True)
onnx_model = ir.load(fpath_2)
DynamoOnnxHelper.fold_transpose_initializers(onnx_model)
onnxscript.rewriter.rewrite(onnx_model)
onnxscript.optimizer.optimize(onnx_model, onnx_shape_inference=False, input_size_limit=4*2048*2048, output_size_limit=4*2048*2048)
fpath_3 = os.path.join(temp_folder_3, filename)
ir.save(onnx_model, fpath_3, external_data=f"{filename}.data")
shutil.rmtree(temp_folder_2)
onnx_model = onnx.load_model(fpath_3, load_external_data=True)
# Fix labels of dynamic axes since they can't be specified during Dynamo export currently
onnx_model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = "num_audios"
onnx_model.graph.input[0].type.tensor_type.shape.dim[1].dim_param = "num_frames"
onnx_model.graph.input[1].type.tensor_type.shape.dim[0].dim_param = "num_audios"
onnx_model.graph.input[1].type.tensor_type.shape.dim[1].dim_param = "num_frames"
onnx_model.graph.input[2].type.tensor_type.shape.dim[0].dim_param = "num_audios"
onnx_model.graph.output[0].type.tensor_type.shape.dim[0].dim_param = "num_audio_tokens"
onnx_model = DynamoOnnxHelper(onnx_model)
onnx_model.convert_constants_to_initializers()
onnx_model.clear_metadata()
os.remove(fpath_3)
os.remove(fpath_3 + ".data")
onnx_model.model.save_model_to_file(fpath_3, use_external_data_format=True, all_tensors_to_one_file=True, convert_attribute=True) # convert_attribute = True needed because of ONNX/ORT rewriter
# ORT transformer optimizer
temp_folder_4 = os.path.join(args.output, "speech_after_opt")
fpath_4 = os.path.join(temp_folder_4, filename)
subprocess.run(
[
f"{sys.executable}", "-m", "onnxruntime.transformers.optimizer",
"--input", fpath_3,
"--output", fpath_4,
"--model_type", "conformer",
"--num_heads", str(16),
"--hidden_size", str(1024),
"--use_external_data_format",
"--opt_level", str(0),
"--disable_shape_inference",
"--convert_attribute",
]
)
shutil.rmtree(temp_folder_3)
# ORT 4-bits quantizer
fpath_5 = os.path.join(args.output, filename)
cmd = [
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
"--input_model", fpath_4,
"--output_model", fpath_5,
"--block_size", str(32),
]
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
subprocess.run(cmd)
shutil.rmtree(temp_folder_4)
def build_embedding(args):
# TorchScript export
batch_size, sequence_length, num_image_tokens, num_audio_tokens = 2, 8, 2, 2
inputs = {
"input_ids": torch.randint(low=0, high=config.vocab_size, size=(batch_size, sequence_length), device=args.execution_provider.replace("dml", "cuda"), dtype=torch.int64),
"image_features": torch.randn(num_image_tokens, config.hidden_size, device=args.execution_provider.replace("dml", "cuda"), dtype=args.precision),
"audio_features": torch.randn(num_audio_tokens, config.hidden_size, device=args.execution_provider.replace("dml", "cuda"), dtype=args.precision),
}
inputs["input_ids"][0][0] = -1
inputs["input_ids"][0][1] = -1
inputs["input_ids"][0][2] = -10000
inputs["input_ids"][0][3] = -10000
dummy_inputs = (
inputs["input_ids"], # input_ids: torch.LongTensor
inputs["image_features"], # image_features: Optional[torch.FloatTensor] = None,
inputs["audio_features"], # audio_features: Optional[torch.FloatTensor] = None,
)
dynamic_axes = {
"input_ids": {0: "batch_size", 1: "sequence_length"},
"image_features": {0: "num_image_tokens"},
"audio_features": {0: "num_audio_tokens"},
"inputs_embeds": {0: "batch_size", 1: "sequence_length"},
}
filename = "phi-4-mm-embedding.onnx"
temp_folder_1 = os.path.join(args.output, "embedding_init_export")
os.makedirs(temp_folder_1, exist_ok=True)
fpath_1 = os.path.join(temp_folder_1, filename)
torch.onnx.export(
model.model.combined_embed,
args=dummy_inputs,
f=fpath_1,
export_params=True,
input_names=["input_ids", "image_features", "audio_features"],
output_names=["inputs_embeds"],
dynamic_axes=dynamic_axes,
opset_version=14,
do_constant_folding=True,
)
onnx.checker.check_model(fpath_1)
onnx.shape_inference.infer_shapes_path(fpath_1)
onnx_model = onnx.load_model(fpath_1, load_external_data=True)
fpath_2 = os.path.join(args.output, filename)
onnx.save_model(
onnx_model,
fpath_2,
save_as_external_data=True,
all_tensors_to_one_file=True,
location=f"{filename}.data",
size_threshold=0,
convert_attribute=False,
)
shutil.rmtree(temp_folder_1)
def build_text(args):
# Create ONNX model
model_name = None
precision = "int4"
extra_options = {
"exclude_embeds": "true",
"filename": "phi-4-mm-text.onnx",
}
if args.precision == torch.float32: extra_options["int4_accuracy_level"] = 4
create_model(model_name, args.input, args.output, precision, args.execution_provider, args.cache_dir, **extra_options)
def build_adapters(args):
# setattr(args, 'use_ortvalue', True)
# build_float_adapters(args)
setattr(args, 'use_ortvalue', False)
build_quantized_adapters(args)
def extract_adapters_from_torch(args):
# Extract LoRAs from PyTorch model
hidden_size = config.hidden_size
num_kv_heads = config.num_key_value_heads
num_attn_heads = config.num_attention_heads
head_size = hidden_size // num_attn_heads
q_size = num_attn_heads * head_size
kv_size = num_kv_heads * head_size
intermediate_size = config.intermediate_size
vision_scaling = config.vision_lora["lora_alpha"] / config.vision_lora["r"]
speech_scaling = config.speech_lora["lora_alpha"] / config.speech_lora["r"]
vision_adapters = {}
speech_adapters = {}
for key, val in model.state_dict().items():
# Map name in graph as key
new_dict = {}
key = key.replace("self_attn", "attn").replace("lora_A", "lora_A.MatMul").replace("lora_B", "lora_B.MatMul")
if "lora_A" in key:
# LoRA_A is shared across projections
if "qkv_proj" in key:
new_dict[key.replace("qkv_proj", "q_proj")] = val
new_dict[key.replace("qkv_proj", "k_proj")] = val
new_dict[key.replace("qkv_proj", "v_proj")] = val
elif "gate_up_proj" in key:
new_dict[key.replace("gate_up_proj", "gate_proj")] = val
new_dict[key.replace("gate_up_proj", "up_proj")] = val
else:
new_dict[key] = val
elif "lora_B" in key:
# LoRA_B is split across projections
if "qkv_proj" in key:
new_dict[key.replace("qkv_proj", "q_proj")] = val[: q_size, :]
new_dict[key.replace("qkv_proj", "k_proj")] = val[q_size : q_size + kv_size, :]
new_dict[key.replace("qkv_proj", "v_proj")] = val[q_size + kv_size :, :]
elif "gate_up_proj" in key:
new_dict[key.replace("gate_up_proj", "gate_proj")] = val[: intermediate_size, :]
new_dict[key.replace("gate_up_proj", "up_proj")] = val[intermediate_size :, :]
else:
new_dict[key] = val
else:
continue
for new_key, new_val in new_dict.items():
new_key = new_key.replace(".vision", "").replace(".speech", "")
if "vision" in key:
np_data = new_val.detach().cpu().to(args.precision).numpy().transpose()
if "lora_B" in key:
np_data *= vision_scaling
vision_adapters[new_key] = ort.OrtValue.ortvalue_from_numpy(np_data) if args.use_ortvalue else np_data
elif "speech" in key:
np_data = new_val.detach().cpu().to(args.precision).numpy().transpose()
if "lora_B" in key:
np_data *= speech_scaling
speech_adapters[new_key] = ort.OrtValue.ortvalue_from_numpy(np_data) if args.use_ortvalue else np_data
else:
raise ValueError(f"Unknown LoRA key found: {key}")
return vision_adapters, speech_adapters
def build_onnx_adapters(vision_adapters, speech_adapters):
# Convert vision LoRAs
adapter_format = ort.AdapterFormat()
adapter_format.set_adapter_version(1)
adapter_format.set_model_version(1)
adapter_format.set_parameters(vision_adapters)
adapter_format.export_adapter(os.path.join(args.output, "phi-4-mm-vision.onnx_adapter"))
# Convert speech LoRAs
adapter_format = ort.AdapterFormat()
adapter_format.set_adapter_version(1)
adapter_format.set_model_version(1)
adapter_format.set_parameters(speech_adapters)
adapter_format.export_adapter(os.path.join(args.output, "phi-4-mm-speech.onnx_adapter"))
# Convert LoRA weights in ONNX model to inputs
filename = "phi-4-mm-text.onnx"
fpath = os.path.join(args.output, filename)
onnx_model = onnx.load_model(fpath)
to_proto = {
"tensor(int8)": TensorProto.INT8,
"tensor(uint8)": TensorProto.UINT8,
"tensor(float16)": TensorProto.FLOAT16,
"tensor(float)": TensorProto.FLOAT,
}
for key, val in vision_adapters.items():
# Handle different sized feature dimensions between adapters by using dynamic axes
shape = val.shape()
if "lora_A.MatMul.weight_Q4" in key:
shape[0] = "out_features"
elif "lora_B.MatMul.weight_Q4" in key:
shape[1] = "(in_features + block_size - 1) // block_size"
elif "lora_A.MatMul.weight_scales" in key or "lora_B.MatMul.weight_scales" in key:
shape[0] = "in_features * out_features / block_size"
elif "lora_A.MatMul.weight" in key:
shape[1] = "out_features"
elif "lora_B.MatMul.weight" in key:
shape[0] = "in_features"
new_input = helper.make_tensor_value_info(key, to_proto[val.data_type()], shape)
onnx_model.graph.input.extend([new_input])
for initializer in onnx_model.graph.initializer:
if initializer.name == key:
# Add 0-filled static initializer for when LoRA isn't used
# since size of inner dims in LoRA path don't matter
zero_initializer = helper.make_tensor(
name=initializer.name,
data_type=initializer.data_type,
dims=val.shape(),
vals=np.zeros(val.shape(), dtype=helper.tensor_dtype_to_np_dtype(initializer.data_type)).flatten(),
)
onnx_model.graph.initializer.remove(initializer)
onnx_model.graph.initializer.append(zero_initializer)
break
os.remove(fpath)
os.remove(fpath + ".data")
onnx.save_model(
onnx_model,
fpath,
save_as_external_data=True,
all_tensors_to_one_file=True,
location=f"{filename}.data",
size_threshold=0,
convert_attribute=False,
)
def build_float_adapters(args):
vision_adapters, speech_adapters = extract_adapters_from_torch(args)
build_onnx_adapters(vision_adapters, speech_adapters)
def build_adapter_only_onnx_model(args, adapters, filename, fpath):
inputs, outputs, initializers, value_infos, nodes = [], [], [], [], []
dtype = TensorProto.FLOAT16 if args.precision == torch.float16 else TensorProto.FLOAT
for key, val in adapters.items():
# Create input and output
inputs.append(helper.make_tensor_value_info(f"input.{key}", dtype, ["batch_size", "sequence_length", val.shape[0]]))
outputs.append(helper.make_tensor_value_info(f"output.{key}", dtype, ["batch_size", "sequence_length", val.shape[1]]))
# Create initializer data
tensor = numpy_helper.from_array(val)
tensor.name = key
initializers.append(tensor)
# Create MatMul node
matmul_node = helper.make_node(
"MatMul",
inputs=[inputs[-1].name, tensor.name],
outputs=[outputs[-1].name],
name=f"node.{key}",
)
nodes.append(matmul_node)
model = helper.make_model(
opset_imports=[helper.make_operatorsetid('', 14)],
ir_version=7,
producer_name="onnxruntime-genai",
producer_version="0.0.0",
graph=helper.make_graph(
name="main_graph",
inputs=inputs,
outputs=outputs,
initializer=initializers,
value_info=value_infos,
nodes=nodes,
)
)
onnx.save_model(
model,
fpath,
save_as_external_data=True,
all_tensors_to_one_file=True,
location=f"{filename}.data",
size_threshold=0,
convert_attribute=False,
)
def extract_adapters_from_onnx(args, fpath):
adapters = {}
model = onnx.load_model(fpath)
for initializer in model.graph.initializer:
val = numpy_helper.to_array(initializer)
adapters[initializer.name] = ort.OrtValue.ortvalue_from_numpy(val)
return adapters
def build_quantized_adapters(args):
# 1. Extract LoRAs from PyTorch model
vision_adapters, speech_adapters = extract_adapters_from_torch(args)
# 2. Put LoRAs into separate ONNX models
filename = "phi-4-mm-lora-vision.onnx"
fpath_1 = os.path.join(args.output, filename)
vision_model = build_adapter_only_onnx_model(args, vision_adapters, filename, fpath_1)
filename = "phi-4-mm-lora-speech.onnx"
fpath_2 = os.path.join(args.output, filename)
speech_model = build_adapter_only_onnx_model(args, speech_adapters, filename, fpath_2)
# 3. Quantize ONNX models to int4
filename = "phi-4-mm-qlora-vision.onnx"
fpath_3 = os.path.join(args.output, filename)
cmd = [
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
"--input_model", fpath_1,
"--output_model", fpath_3,
"--block_size", str(32),
]
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
subprocess.run(cmd)
filename = "phi-4-mm-qlora-speech.onnx"
fpath_4 = os.path.join(args.output, filename)
cmd = [
f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
"--input_model", fpath_2,
"--output_model", fpath_4,
"--block_size", str(32),
]
if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
subprocess.run(cmd)
os.remove(fpath_1)
os.remove(fpath_1 + ".data")
os.remove(fpath_2)
os.remove(fpath_2 + ".data")
# 4. Extract quantized LoRAs from ONNX models
vision_adapters = extract_adapters_from_onnx(args, fpath_3)
speech_adapters = extract_adapters_from_onnx(args, fpath_4)
# 5. Store quantized LoRAs in adapter files
build_onnx_adapters(vision_adapters, speech_adapters)
os.remove(fpath_3)
os.remove(fpath_3 + ".data")
os.remove(fpath_4)
os.remove(fpath_4 + ".data")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--input",
required=True,
help="Path to folder on disk containing the Hugging Face config, model, tokenizer, etc.",
)
parser.add_argument(
"-o",
"--output",
required=True,
help="Path to folder to store ONNX model and additional files (e.g. GenAI config, external data files, etc.)",
)
parser.add_argument(
"-p",
"--precision",
required=True,
choices=["fp16", "fp32"],
help="Precision to export PyTorch components with",
)
parser.add_argument(
"-e",
"--execution_provider",
required=True,
choices=["cpu", "cuda", "dml"],
help="Execution provider for Phi-4 multimodal components",
)
parser.add_argument(
"-c",
"--cache_dir",
required=False,
default=os.path.join('.', 'cache_dir'),
help="Cache directory for Hugging Face files and temporary ONNX external data files",
)
args = parser.parse_args()
args.precision = torch.float16 if args.precision == "fp16" else torch.float32
return args
if __name__ == "__main__":
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
args = get_args()
config = AutoConfig.from_pretrained(args.input, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(args.input, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(args.input, trust_remote_code=True, torch_dtype=args.precision).to(args.execution_provider.replace("dml", "cuda"))
# Build model components
build_vision(args)
build_speech(args)
build_embedding(args)
build_text(args)
build_adapters(args)
|