|
--- |
|
license: mit |
|
|
|
--- |
|
|
|
# LayoutXLM |
|
**Multimodal (text + layout/format + image) pre-training for document AI** |
|
|
|
LayoutXLM is a multilingual variant of LayoutLMv2. |
|
|
|
The documentation of this model in the Transformers library can be found [here](https://huggingface.co/docs/transformers/model_doc/layoutxlm). |
|
|
|
[Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://github.com/microsoft/unilm/tree/master/layoutxlm) |
|
## Introduction |
|
LayoutXLM is a multimodal pre-trained model for multilingual document understanding, which aims to bridge the language barriers for visually-rich document understanding. Experiment results show that it has significantly outperformed the existing SOTA cross-lingual pre-trained models on the XFUND dataset. |
|
|
|
[LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/abs/2104.08836) |
|
|
|
Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei, arXiv Preprint 2021 |