metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: ckpts/llama2-7b-viettel_v3.2_2epoch
results: []
ckpts/llama2-7b-viettel_v3.2_2epoch
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3727
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- total_eval_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4378 | 0.12 | 200 | 0.4331 |
0.4266 | 0.24 | 400 | 0.4187 |
0.4199 | 0.37 | 600 | 0.4086 |
0.4024 | 0.49 | 800 | 0.4016 |
0.4003 | 0.61 | 1000 | 0.3966 |
0.3849 | 0.73 | 1200 | 0.3914 |
0.3814 | 0.86 | 1400 | 0.3865 |
0.3825 | 0.98 | 1600 | 0.3831 |
0.3557 | 1.1 | 1800 | 0.3812 |
0.3531 | 1.22 | 2000 | 0.3789 |
0.3444 | 1.35 | 2200 | 0.3771 |
0.3411 | 1.47 | 2400 | 0.3752 |
0.35 | 1.59 | 2600 | 0.3738 |
0.3586 | 1.71 | 2800 | 0.3733 |
0.349 | 1.84 | 3000 | 0.3728 |
0.357 | 1.96 | 3200 | 0.3727 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.14.0