metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 지벤 안전화 ZB-176 ZIBEN 절연안전화, 벨크로타입 270 삼진안전
- text: 성인 소가죽 남성 라틴 댄스 신발 교사 코치 댄스화 245_G 타입 황금망또직구야
- text: 아디다스 갤럭시5 런닝화 운동화 워킹화 조깅화 러닝화 신발 FW5717 6. 니짜 로우 (흰검)_265 페라토도
- text: 신사야 소가죽 윙팁 옥스포드 남성구두 SSY3008 브라운_270 신사야
- text: '[프로스펙스 본사] 파워소닉 513 260 (주)엘에스네트웍스'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.5946474175222807
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 13 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
10.0 |
|
4.0 |
|
7.0 |
|
3.0 | |
1.0 |
|
9.0 |
|
0.0 |
|
2.0 |
|
6.0 |
|
8.0 |
|
12.0 |
|
11.0 |
|
5.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.5946 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac1")
# Run inference
preds = model("[프로스펙스 본사] 파워소닉 513 260 (주)엘에스네트웍스")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 10.5062 | 24 |
Label | Training Sample Count |
---|---|
0.0 | 50 |
1.0 | 50 |
2.0 | 50 |
3.0 | 50 |
4.0 | 50 |
5.0 | 50 |
6.0 | 50 |
7.0 | 50 |
8.0 | 50 |
9.0 | 50 |
10.0 | 50 |
11.0 | 50 |
12.0 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0098 | 1 | 0.4275 | - |
0.4902 | 50 | 0.3352 | - |
0.9804 | 100 | 0.2575 | - |
1.4706 | 150 | 0.1047 | - |
1.9608 | 200 | 0.0551 | - |
2.4510 | 250 | 0.0236 | - |
2.9412 | 300 | 0.0234 | - |
3.4314 | 350 | 0.0063 | - |
3.9216 | 400 | 0.0041 | - |
4.4118 | 450 | 0.0058 | - |
4.9020 | 500 | 0.0015 | - |
5.3922 | 550 | 0.0005 | - |
5.8824 | 600 | 0.0002 | - |
6.3725 | 650 | 0.0002 | - |
6.8627 | 700 | 0.0002 | - |
7.3529 | 750 | 0.0002 | - |
7.8431 | 800 | 0.0001 | - |
8.3333 | 850 | 0.0001 | - |
8.8235 | 900 | 0.0001 | - |
9.3137 | 950 | 0.0001 | - |
9.8039 | 1000 | 0.0001 | - |
10.2941 | 1050 | 0.0001 | - |
10.7843 | 1100 | 0.0001 | - |
11.2745 | 1150 | 0.0001 | - |
11.7647 | 1200 | 0.0001 | - |
12.2549 | 1250 | 0.0001 | - |
12.7451 | 1300 | 0.0001 | - |
13.2353 | 1350 | 0.0001 | - |
13.7255 | 1400 | 0.0001 | - |
14.2157 | 1450 | 0.0001 | - |
14.7059 | 1500 | 0.0001 | - |
15.1961 | 1550 | 0.0001 | - |
15.6863 | 1600 | 0.0001 | - |
16.1765 | 1650 | 0.0001 | - |
16.6667 | 1700 | 0.0001 | - |
17.1569 | 1750 | 0.0001 | - |
17.6471 | 1800 | 0.0001 | - |
18.1373 | 1850 | 0.0001 | - |
18.6275 | 1900 | 0.0001 | - |
19.1176 | 1950 | 0.0 | - |
19.6078 | 2000 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}