metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 14k 18k 1.5g 꼬임 꽈배기 반지 레이어드 실반지 심플 우정반지 커플링 골든시크릿 14k_화이트골드_1 세건인터내셔널
- text: 은귀걸이+은목걸이 에센스 세트 실버 순은 여자 여성 고급케이스 오엑스골드
- text: 유닉크한느낌 우아한반지 화려한 AAAA 10 11mm 남해 라운드 담수 한복반지진주반지 WHITE 리마106
- text: 종로웨딩밴드 14K 18K 투톤 가드링세트 커플링 결혼반지 18K남자반지_리얼화이트골드(무도금)_18 최실
- text: 로이드 10k 더블라인 7월 탄생석 반지 LRT1952GT 옐로우(YG)_6 동아쇼핑점
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8263560686728597
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 9 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| 6.0 |
|
| 3.0 |
|
| 4.0 |
|
| 7.0 |
|
| 2.0 |
|
| 1.0 |
|
| 0.0 |
|
| 5.0 |
|
| 8.0 |
|
Evaluation
Metrics
| Label | Metric |
|---|---|
| all | 0.8264 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac13")
# Run inference
preds = model("은귀걸이+은목걸이 에센스 세트 실버 순은 여자 여성 고급케이스 오엑스골드")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 3 | 10.3556 | 23 |
| Label | Training Sample Count |
|---|---|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 50 |
| 6.0 | 50 |
| 7.0 | 50 |
| 8.0 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0141 | 1 | 0.386 | - |
| 0.7042 | 50 | 0.3306 | - |
| 1.4085 | 100 | 0.1325 | - |
| 2.1127 | 150 | 0.0469 | - |
| 2.8169 | 200 | 0.0185 | - |
| 3.5211 | 250 | 0.0014 | - |
| 4.2254 | 300 | 0.0006 | - |
| 4.9296 | 350 | 0.0003 | - |
| 5.6338 | 400 | 0.0002 | - |
| 6.3380 | 450 | 0.0002 | - |
| 7.0423 | 500 | 0.0002 | - |
| 7.7465 | 550 | 0.0001 | - |
| 8.4507 | 600 | 0.0001 | - |
| 9.1549 | 650 | 0.0001 | - |
| 9.8592 | 700 | 0.0001 | - |
| 10.5634 | 750 | 0.0001 | - |
| 11.2676 | 800 | 0.0001 | - |
| 11.9718 | 850 | 0.0001 | - |
| 12.6761 | 900 | 0.0001 | - |
| 13.3803 | 950 | 0.0001 | - |
| 14.0845 | 1000 | 0.0001 | - |
| 14.7887 | 1050 | 0.0001 | - |
| 15.4930 | 1100 | 0.0001 | - |
| 16.1972 | 1150 | 0.0001 | - |
| 16.9014 | 1200 | 0.0001 | - |
| 17.6056 | 1250 | 0.0001 | - |
| 18.3099 | 1300 | 0.0001 | - |
| 19.0141 | 1350 | 0.0001 | - |
| 19.7183 | 1400 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}