|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: (시흥점)루이까또즈 여성 3단 반지갑 SP3HT03IV 아이보리_ONE SIZE 신세계프리미엄아울렛 |
|
- text: 닥스 악세서리 남성 22FW populet 로고패턴 소가죽 반지갑 WBWA2F729BK 정품(Best Quality)스토어 |
|
- text: '베노베로 (23FW) 알렉스 소프트 엠보 소가죽 미니중지갑 BJF1ACP1201K1-BS 블랙(선물아님) ' |
|
- text: '[갤러리아] [헤지스ACC] HIHO2F602G2 [LEENA] 그레이 배색 가죽 목걸이카드홀더(한화갤러리아㈜ 센터시티) 한화갤러리아(주)' |
|
- text: '[롯데백화점]라코스테 24SS (여성) 데일리 라이프스타일 지퍼 반지갑 [NF4375D54G 000 YDP] 롯데백화점_' |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.7924514420247204 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 8 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 6.0 | <ul><li>'해킹방지 카본 카드지갑 RFID 도난방지 자석오토지갑 블랙 화인트레이드'</li><li>'[라코스테](천안아산점)더 블렌드 포켓 오거나이저(NH4134L54GH45) 신세계백화점'</li><li>'닥스_핸드백 (선물포장)(DAKS X DISNEY) 미키마우스 가죽배색 체크 여성 카드 롯데백화점2관'</li></ul> | |
|
| 1.0 | <ul><li>'이케아 KNOLIG 크뇔리그 동전지갑 소품 가방 주머니 참 인테리어 색상_옐로우 호랑이스토어5'</li><li>'레오파드 미니 동전지갑 캐리어파우치 폰토스(Pontos)'</li><li>'[비비안웨스트우드][비비안 웨스트우드] 조르단 더블 프레임 동전지갑 52020041 L001J N403(김해점) ONE SIZE 신세계백화점'</li></ul> | |
|
| 5.0 | <ul><li>'BEANPOLE] 빈폴 ACC 스트랩 파우치/카드 SET 블랙/핑크(BE04A4W995) 블랙 메가 세일'</li><li>'지갑& 벨트01G1295Z8K외5종/피에르가르뎅_핸드백 01G1295Z8K 롯데쇼핑(주)'</li><li>'[빈폴 ACC] 스트랩 파우치/카드 SET 블랙 (BE04A4W995) 블랙_one size 윈아이'</li></ul> | |
|
| 4.0 | <ul><li>'[헤지스ACC]HJHO3F332W2/[23FW] 브라운 로고패턴 가죽 키링 에이케이에스앤디 (주) AK인터넷쇼핑몰'</li><li>'[롯데백화점]닥스ACC [선물포장/쇼핑백동봉] 블랙 로고패턴 가죽 키링 DBHO4E138 롯데백화점_'</li><li>'[선물포장] HJHO3E281BK_남성 블랙 퍼피로고 체크배색 키링/헤지스ACC 롯데쇼핑(주)'</li></ul> | |
|
| 0.0 | <ul><li>'타미힐피거 타미힐피거 남성반지갑 31TL22X046 블랙 네이비 네이비 SK스토아모바일'</li><li>'[선물포장] DBWA3F717W3 브라운 악어가죽/닥스ACC 롯데쇼핑(주)'</li><li>'[헤지스 액세서리] [24SS] HJWA4E906BK Online 한정판BASIC 블랙 솔리드 퍼피로고 소 XXX '</li></ul> | |
|
| 3.0 | <ul><li>'여성반지갑 SL3AL04BL/루이까또즈 BLACK 롯데쇼핑(주)'</li><li>'MINI POCKET - BLACK 주식회사 이코컴퍼니'</li><li>'[롯데백화점]닥스ACC [선물포장/쇼핑백동봉]브라운 체크 가죽 핸드폰케이스 DCHO2F328W2 롯데백화점_'</li></ul> | |
|
| 7.0 | <ul><li>'동지갑 베트남 환전 통장 여행 슬림 파우치 다낭 해외 지퍼 여권 03. 블랙 동쯔몰'</li><li>'도장 가방 인감 스탬프 케이스 수납 문서 보관 통장 V번 인감 수납가방 홍마켓(hong)'</li><li>'여행용 여권 파우치 목걸이 수납 휴대용 보호커버 블루 나이스쇼핑'</li></ul> | |
|
| 2.0 | <ul><li>'[갤러리아] 8059461 MS CHASE GC9 B2871 ONE SIZE 한화갤러리아(주)'</li><li>'국내발송 MATIN KIM 마땡킴 GLOSSY CAMP WALLET IN WHITE MK2311WL001M0WH FREE 말로스'</li><li>'[헤지스](신세계본점)[HAZZYS ACC] [GOLDEN LANE] 블랙 로고패턴 소가죽 반지갑 HJWA1F562BK 주식회사 에스에스지닷컴'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.7925 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_ac14") |
|
# Run inference |
|
preds = model("(시흥점)루이까또즈 여성 3단 반지갑 SP3HT03IV 아이보리_ONE SIZE 신세계프리미엄아울렛") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 9.21 | 19 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
| 5.0 | 50 | |
|
| 6.0 | 50 | |
|
| 7.0 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0159 | 1 | 0.3853 | - | |
|
| 0.7937 | 50 | 0.2743 | - | |
|
| 1.5873 | 100 | 0.1039 | - | |
|
| 2.3810 | 150 | 0.0564 | - | |
|
| 3.1746 | 200 | 0.0306 | - | |
|
| 3.9683 | 250 | 0.0124 | - | |
|
| 4.7619 | 300 | 0.0146 | - | |
|
| 5.5556 | 350 | 0.0008 | - | |
|
| 6.3492 | 400 | 0.0007 | - | |
|
| 7.1429 | 450 | 0.0001 | - | |
|
| 7.9365 | 500 | 0.0001 | - | |
|
| 8.7302 | 550 | 0.0001 | - | |
|
| 9.5238 | 600 | 0.0001 | - | |
|
| 10.3175 | 650 | 0.0001 | - | |
|
| 11.1111 | 700 | 0.0001 | - | |
|
| 11.9048 | 750 | 0.0001 | - | |
|
| 12.6984 | 800 | 0.0001 | - | |
|
| 13.4921 | 850 | 0.0001 | - | |
|
| 14.2857 | 900 | 0.0001 | - | |
|
| 15.0794 | 950 | 0.0 | - | |
|
| 15.8730 | 1000 | 0.0001 | - | |
|
| 16.6667 | 1050 | 0.0 | - | |
|
| 17.4603 | 1100 | 0.0 | - | |
|
| 18.2540 | 1150 | 0.0 | - | |
|
| 19.0476 | 1200 | 0.0 | - | |
|
| 19.8413 | 1250 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |