|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: '[현대백화점][비비안](RU1260) 40% 가격인하 순면 80수 기본 남성런닝 95 (주)현대백화점' |
|
- text: 부드러운 터치감 남성 실켓가공 런닝 트렁크 팬티 세트 VMV4183VMP4183N/비너스 브라운_런닝105-팬티105 롯데쇼핑(주) |
|
- text: '[리더스] 신축성 좋은 복부 코르셋 땀복 남자 바지 (15005144) 블랙_XL 신세계몰' |
|
- text: 탑텐 탑텐 공용 플란넬 라운지웨어 세트 MSC4UI3001 rva-482878f BE_L(540) 라비아세개 |
|
- text: BYC 남성용 50수 순면 민소매 그랜드 런닝 2호 백색 1매 BYI6035 95 (주)대화언더웨어 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.8497076023391813 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 6 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 5.0 | <ul><li>'CK퍼포먼스 24 SUMMER 여름셋업 남여공용 4종 [0001]블랙 90(S) CJONSTYLE_LIVE'</li><li>'CALVIN KLEIN UNDERWEAR 여성 모던 코튼 T팬티_F3786D001 F3786D001 블랙_M 럭스펄스'</li><li>'[갭][갭] 옴므 트렁크 6종 택1 GPMTR1O30T 네이비/L(100) 패션플러스'</li></ul> | |
|
| 1.0 | <ul><li>'[와코루](신세계마산점)선염 모달 + 면 스판 스트라이프 조끼런닝 삼각 팬티 세트(WMV2378RWMP2378P) 95_100 주식회사 에스에스지닷컴'</li><li>'남자 속옷 등산 스포츠 SET 자전거 축구 스프츠 골프 백색_100 꼬북샵'</li><li>'싸이로컴팩 면모달 선염스트라이프 런닝RU1695T 네이비_100 신세계몰'</li></ul> | |
|
| 3.0 | <ul><li>'CJ [리복] 스피드윅 기모 웜에어 상하의 2종 세트 남성 최신상 택일 옵션01.RBMYIEM01_00_100 (주)씨제이이엔엠'</li><li>'아르메데스 남성용 히트기모 발열내의 터틀넥 상의 AR-25 3매 블랙_M (주)아르메데스'</li><li>'[기능성 의류 BEST] 시원한 냉감 기능은 기본! 완벽한 자외선 차단! 기능성 티셔츠/조거팬츠/등산바지/아웃도어 의류 01.TM-MZS303_M_ZZGRY 테슬라_TSLA'</li></ul> | |
|
| 0.0 | <ul><li>'남자 쿨 티셔츠 남성 냉감 나시티 기능성 반팔티 쿨링 EVE 화이트_100 에브리씽굿'</li><li>'비비안 모다아울렛 비비안 젠토프 텐셀솔리드 기본 반팔런닝 RU1239T 네이비_95 MODA아울렛'</li><li>'탑텐 TOPTEN 남성 쿨에어 크루넥 매쉬 탱크_MSD2UL1201 BK_100 가투투'</li></ul> | |
|
| 2.0 | <ul><li>'니플 나시 남자보정 속옷이너핏여유증커버남성뱃살가리개꼭지가슴압박복가리기티 남자보정나시 보급형/L/화이트 조니멀티샵'</li><li>'하라마키 배워머 더블 배워머 보온복대 남성용 HT-LunesDB-Charcoal-M BESTYOURS'</li><li>'고급 따뜻한 남자 밴딩 기모 레깅스 겨울 발열 내복 바지 보온 타이즈 블랙_2XL 사랑니'</li></ul> | |
|
| 4.0 | <ul><li>'[오르시떼](센텀시티점)남성 D123 오니리크 반소매 상하 S 신세계백화점'</li><li>'(신세계마산점)오르시떼남성 D105 브데뜨 긴소매 상하 S 신세계백화점'</li><li>'JAJU 남 라이트 밍크 플리스 파자마 세트 블루 L 리치쇼핑'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8497 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_ap0") |
|
# Run inference |
|
preds = model("[리더스] 신축성 좋은 복부 코르셋 땀복 남자 바지 (15005144) 블랙_XL 신세계몰") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 9.5967 | 24 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
| 5.0 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0213 | 1 | 0.4362 | - | |
|
| 1.0638 | 50 | 0.3126 | - | |
|
| 2.1277 | 100 | 0.0687 | - | |
|
| 3.1915 | 150 | 0.0294 | - | |
|
| 4.2553 | 200 | 0.0006 | - | |
|
| 5.3191 | 250 | 0.0003 | - | |
|
| 6.3830 | 300 | 0.0002 | - | |
|
| 7.4468 | 350 | 0.0002 | - | |
|
| 8.5106 | 400 | 0.0001 | - | |
|
| 9.5745 | 450 | 0.0001 | - | |
|
| 10.6383 | 500 | 0.0001 | - | |
|
| 11.7021 | 550 | 0.0001 | - | |
|
| 12.7660 | 600 | 0.0001 | - | |
|
| 13.8298 | 650 | 0.0001 | - | |
|
| 14.8936 | 700 | 0.0001 | - | |
|
| 15.9574 | 750 | 0.0001 | - | |
|
| 17.0213 | 800 | 0.0001 | - | |
|
| 18.0851 | 850 | 0.0001 | - | |
|
| 19.1489 | 900 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |