|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 맑은농산 리얼넛츠 베리앤요거트 하루건강견과 20g x 25개입 비트리 |
|
- text: 23년 햅쌀 골든퀸3호 수향미 특등급 10kg / 순차출고 상상리허설 |
|
- text: 산과들에 원데이오리지널 20g x 50개입 선물세트 동의 제이엠세일즈 |
|
- text: 구운아몬드 1kg 견과류 에이케이에스앤디 (주) AK인터넷쇼핑몰 |
|
- text: 필리핀 세부 건망고 80g 10개-쫀득한망고 말린망고 말린과일 대신유통 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.894413407821229 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 7 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 6.0 | <ul><li>'[채울농산] 국산 장수상황버섯(baumii 최상품) 1개월분 (100g) 1개월분 채울농산'</li><li>'명이나물 2kg 산마늘잎 생명이나물 산나물 생채 명이장아찌 강원도 산마늘 명이 장아찌 2kg 토종농장'</li><li>'풀무원 한끼연두부 오리엔탈유자 (118gX2EA) (주)풀무원'</li></ul> | |
|
| 2.0 | <ul><li>'커클랜드 건 블루베리 567g 몸에 좋은 건과일 샐러드나 베이킹에 활용 코스트코 마인드 트레이드(mind trade)'</li><li>'웰프레쉬 냉동 블루베리 미국산 1kg 배동바지몰'</li><li>'커클랜드 냉동 블루베리 2.27kg 코스트코 아이스박스 요거트 과일 베리 라미의잡화점'</li></ul> | |
|
| 5.0 | <ul><li>'2022년산 국산 서리태 2kg 검은콩 속청 전남 구례산 볶은 서리태가루 1kg 농업회사법인(주)한결유통'</li><li>'국산 서리태 2kg 검은콩 속청 전남 구례산 국산 서리태(특A) 1kg 농업회사법인(주)한결유통'</li><li>'잔다리마을 특허받은 공법으로 로스팅한 검은콩 서리태 볶음콩 250g / 영양 간식 주식회사 패스트뷰'</li></ul> | |
|
| 0.0 | <ul><li>'Sol Simple 태양열 건조 망고 6온스(1팩)_파인애플 시이부동'</li><li>'[푸드] KUNNA 쿤나 건망고 75g 3개 부담없이 젤리 망고 마른 과일 태국 간식 사무실 탕비실 건조과일 말린 망고 에스디지컴퍼니'</li><li>'너츠브라더 촉촉한 건망고 200g 건망고 1kg (주)조하'</li></ul> | |
|
| 4.0 | <ul><li>'[카무트] 고대곡물 카무트 쌀 밀 500g 이푸른(주)'</li><li>'23년 국산 현미 쌀눈 2kg 주식회사 건강중심'</li><li>'[예약구매 할인] 저당 파로 800g 이탈리아 고대곡물 바비조아 저당밥 시리즈 특허공법 저항성전분 주식회사 바비조아'</li></ul> | |
|
| 1.0 | <ul><li>'맛있는家 너트리 캘리포니아 생아몬드 500g x 2개 (주)씨제이이엔엠'</li><li>'길림양행 탐스팜 쿠키앤크림 아몬드 190g 바이트리스'</li><li>'머거본 커피땅콩 130g 6개/ 견과류 마른안주 주전부리 보마스'</li></ul> | |
|
| 3.0 | <ul><li>'웰루츠 A등급 냉동 블루베리 1kg 냉동과일 웰루츠 냉동 키위 다이스(중국) 1kg 웰루츠'</li><li>'뉴뜨레 냉동 블루베리 홀 1kg+1kg 무가당 세척블루베리 과일 모음 다이스 퓨레 뉴뜨레 냉동 그린키위 1kg x 2봉 주식회사 보금푸드'</li><li>'코스트코 커클랜드 냉동 블루베리 2.27kg / 아이스박스 포장발송 아이스팩 + 드라이아이스 발송 남들과 다르게'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8944 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_fd5") |
|
# Run inference |
|
preds = model("구운아몬드 1kg 견과류 에이케이에스앤디 (주) AK인터넷쇼핑몰") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 4 | 10.0886 | 25 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
| 5.0 | 50 | |
|
| 6.0 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0182 | 1 | 0.4119 | - | |
|
| 0.9091 | 50 | 0.2564 | - | |
|
| 1.8182 | 100 | 0.0407 | - | |
|
| 2.7273 | 150 | 0.0157 | - | |
|
| 3.6364 | 200 | 0.014 | - | |
|
| 4.5455 | 250 | 0.0 | - | |
|
| 5.4545 | 300 | 0.0 | - | |
|
| 6.3636 | 350 | 0.0 | - | |
|
| 7.2727 | 400 | 0.0 | - | |
|
| 8.1818 | 450 | 0.0001 | - | |
|
| 9.0909 | 500 | 0.0 | - | |
|
| 10.0 | 550 | 0.0 | - | |
|
| 10.9091 | 600 | 0.0 | - | |
|
| 11.8182 | 650 | 0.0 | - | |
|
| 12.7273 | 700 | 0.0 | - | |
|
| 13.6364 | 750 | 0.0 | - | |
|
| 14.5455 | 800 | 0.0 | - | |
|
| 15.4545 | 850 | 0.0 | - | |
|
| 16.3636 | 900 | 0.0 | - | |
|
| 17.2727 | 950 | 0.0 | - | |
|
| 18.1818 | 1000 | 0.0 | - | |
|
| 19.0909 | 1050 | 0.0 | - | |
|
| 20.0 | 1100 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |