|
--- |
|
base_model: klue/roberta-base |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 밀크바오밥 오리지널 샴푸 베이비파우더 1L 09_트리트먼트 화이트머스크 1000ml (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore |
|
> 화장품/미용 > 헤어케어 > 샴푸 > 약산성샴푸 |
|
- text: 무코타염색제 7박스+3박스+정품 트리트먼트 50g 1.카키브라운 (#M)바디/헤어>바디케어>바디케어세트 Gmarket > 뷰티 > 바디/헤어 |
|
> 바디케어 > 바디케어세트 |
|
- text: 1+1세트~(컨센+릴렉스마스크100ml) 에스테티카 데미지 케어 컨센트레이트 120ml (열활성 열보호 에센스) 정품 + 릴렉스마스크100ml |
|
1개 (#M)쿠팡 홈>싱글라이프>샤워/세안>헤어에센스 Coupang > 뷰티 > 헤어 > 헤어에센스/오일 > 헤어에센스 |
|
- text: 헤드스파7 트리트먼트 더 프리미엄 210ml + 210ml MinSellAmount (#M)바디/헤어>헤어케어>헤어트리트먼트 Gmarket |
|
> 뷰티 > 바디/헤어 > 헤어케어 > 헤어트리트먼트 |
|
- text: 헤어플러스 실크 코팅 트리트먼트 50ml 4개 실크 코팅 트리트먼트 50ml 4개 위메프 > 생활·주방·반려동물 > 바디/헤어 > 샴푸/린스/헤어케어 |
|
> 트리트먼트;위메프 > 생활·주방·반려동물 > 바디/헤어 > 샴푸/린스/헤어케어;위메프 > 뷰티 > 바디/헤어 > 샴푸/린스/헤어케어 > |
|
샴푸/린스;(#M)위메프 > 생활·주방용품 > 바디/헤어 > 샴푸/린스/헤어케어 > 트리트먼트 위메프 > 뷰티 > 바디/헤어 > 샴푸/린스/헤어케어 |
|
> 트리트먼트 |
|
inference: true |
|
model-index: |
|
- name: SetFit with klue/roberta-base |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8206115779645191 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with klue/roberta-base |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 1 | <ul><li>'로레알파리 토탈리페어5 트리트먼트 헤어팩 170ml × 1개 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩'</li><li>'아모스 녹차실감 인텐시브 팩 250ml 녹차실감 인텐시브팩250g 홈>전체상품;(#M)홈>녹차실감 Naverstore > 화장품/미용 > 헤어케어 > 헤어팩'</li><li>'프리미엄 헤어클리닉 헤어팩 258ml 베이비파우더 LotteOn > 뷰티 > 헤어케어 > 헤어팩 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩'</li></ul> | |
|
| 0 | <ul><li>'퓨어시카 트리트먼트 베이비파우더향 1000ml 1개 MinSellAmount 스마일배송 홈>뷰티>바디케어>바디워시;스마일배송 홈>;(#M)스마일배송 홈>뷰티>헤어케어/스타일링>트리트먼트/팩 Gmarket > 뷰티 > 바디/헤어 > 바디케어 > 바디클렌저'</li><li>'1+1 살림백서 탈모 샴푸 엑티브B7 맥주효모 앤 비오틴 1000ml 남자 여자 바이오틴 4)오푼티아 트리트먼트 유칼립투스 1L (#M)화장품/미용>헤어케어>탈모케어 AD > Naverstore > 화장품/미용 > 가을뷰티 > 각질관리템 > 탈모샴푸'</li><li>'1+1 살림백서 오푼티아 퍼퓸 샴푸 500ml 약산성 비듬 지성 두피 볼륨 유칼립투스향 13.유칼립투스 트리트먼트 1+1 500ml (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore > 화장품/미용 > 머스크 > 샴푸'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8206 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt13_9") |
|
# Run inference |
|
preds = model("무코타염색제 7박스+3박스+정품 트리트먼트 50g 1.카키브라운 (#M)바디/헤어>바디케어>바디케어세트 Gmarket > 뷰티 > 바디/헤어 > 바디케어 > 바디케어세트") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 14 | 23.76 | 98 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (64, 64) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 100 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0064 | 1 | 0.4326 | - | |
|
| 0.3185 | 50 | 0.3579 | - | |
|
| 0.6369 | 100 | 0.2616 | - | |
|
| 0.9554 | 150 | 0.0326 | - | |
|
| 1.2739 | 200 | 0.0 | - | |
|
| 1.5924 | 250 | 0.0 | - | |
|
| 1.9108 | 300 | 0.0 | - | |
|
| 2.2293 | 350 | 0.0 | - | |
|
| 2.5478 | 400 | 0.0 | - | |
|
| 2.8662 | 450 | 0.0 | - | |
|
| 3.1847 | 500 | 0.0 | - | |
|
| 3.5032 | 550 | 0.0 | - | |
|
| 3.8217 | 600 | 0.0 | - | |
|
| 4.1401 | 650 | 0.0 | - | |
|
| 4.4586 | 700 | 0.0 | - | |
|
| 4.7771 | 750 | 0.0 | - | |
|
| 5.0955 | 800 | 0.0 | - | |
|
| 5.4140 | 850 | 0.0 | - | |
|
| 5.7325 | 900 | 0.0 | - | |
|
| 6.0510 | 950 | 0.0 | - | |
|
| 6.3694 | 1000 | 0.0 | - | |
|
| 6.6879 | 1050 | 0.0 | - | |
|
| 7.0064 | 1100 | 0.0 | - | |
|
| 7.3248 | 1150 | 0.0 | - | |
|
| 7.6433 | 1200 | 0.0 | - | |
|
| 7.9618 | 1250 | 0.0 | - | |
|
| 8.2803 | 1300 | 0.0 | - | |
|
| 8.5987 | 1350 | 0.0 | - | |
|
| 8.9172 | 1400 | 0.0 | - | |
|
| 9.2357 | 1450 | 0.0 | - | |
|
| 9.5541 | 1500 | 0.0 | - | |
|
| 9.8726 | 1550 | 0.0 | - | |
|
| 10.1911 | 1600 | 0.0 | - | |
|
| 10.5096 | 1650 | 0.0 | - | |
|
| 10.8280 | 1700 | 0.0 | - | |
|
| 11.1465 | 1750 | 0.0 | - | |
|
| 11.4650 | 1800 | 0.0 | - | |
|
| 11.7834 | 1850 | 0.0 | - | |
|
| 12.1019 | 1900 | 0.0 | - | |
|
| 12.4204 | 1950 | 0.0 | - | |
|
| 12.7389 | 2000 | 0.0 | - | |
|
| 13.0573 | 2050 | 0.0 | - | |
|
| 13.3758 | 2100 | 0.0 | - | |
|
| 13.6943 | 2150 | 0.0 | - | |
|
| 14.0127 | 2200 | 0.0 | - | |
|
| 14.3312 | 2250 | 0.0 | - | |
|
| 14.6497 | 2300 | 0.0 | - | |
|
| 14.9682 | 2350 | 0.0 | - | |
|
| 15.2866 | 2400 | 0.0 | - | |
|
| 15.6051 | 2450 | 0.0 | - | |
|
| 15.9236 | 2500 | 0.0 | - | |
|
| 16.2420 | 2550 | 0.0 | - | |
|
| 16.5605 | 2600 | 0.0 | - | |
|
| 16.8790 | 2650 | 0.0 | - | |
|
| 17.1975 | 2700 | 0.0 | - | |
|
| 17.5159 | 2750 | 0.0 | - | |
|
| 17.8344 | 2800 | 0.0 | - | |
|
| 18.1529 | 2850 | 0.0 | - | |
|
| 18.4713 | 2900 | 0.0 | - | |
|
| 18.7898 | 2950 | 0.0 | - | |
|
| 19.1083 | 3000 | 0.0 | - | |
|
| 19.4268 | 3050 | 0.0 | - | |
|
| 19.7452 | 3100 | 0.0 | - | |
|
| 20.0637 | 3150 | 0.0 | - | |
|
| 20.3822 | 3200 | 0.0 | - | |
|
| 20.7006 | 3250 | 0.0 | - | |
|
| 21.0191 | 3300 | 0.0 | - | |
|
| 21.3376 | 3350 | 0.0 | - | |
|
| 21.6561 | 3400 | 0.0 | - | |
|
| 21.9745 | 3450 | 0.0 | - | |
|
| 22.2930 | 3500 | 0.0 | - | |
|
| 22.6115 | 3550 | 0.0 | - | |
|
| 22.9299 | 3600 | 0.0 | - | |
|
| 23.2484 | 3650 | 0.0 | - | |
|
| 23.5669 | 3700 | 0.0 | - | |
|
| 23.8854 | 3750 | 0.0 | - | |
|
| 24.2038 | 3800 | 0.0 | - | |
|
| 24.5223 | 3850 | 0.0 | - | |
|
| 24.8408 | 3900 | 0.0 | - | |
|
| 25.1592 | 3950 | 0.0 | - | |
|
| 25.4777 | 4000 | 0.0 | - | |
|
| 25.7962 | 4050 | 0.0 | - | |
|
| 26.1146 | 4100 | 0.0 | - | |
|
| 26.4331 | 4150 | 0.0 | - | |
|
| 26.7516 | 4200 | 0.0 | - | |
|
| 27.0701 | 4250 | 0.0 | - | |
|
| 27.3885 | 4300 | 0.0 | - | |
|
| 27.7070 | 4350 | 0.0 | - | |
|
| 28.0255 | 4400 | 0.0 | - | |
|
| 28.3439 | 4450 | 0.0 | - | |
|
| 28.6624 | 4500 | 0.0 | - | |
|
| 28.9809 | 4550 | 0.0 | - | |
|
| 29.2994 | 4600 | 0.0 | - | |
|
| 29.6178 | 4650 | 0.0 | - | |
|
| 29.9363 | 4700 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |