metadata
base_model: klue/roberta-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
도브 라이트 샤워 옥시전 모이스춰 바디워시 1L 3개 화이트피치 리밸런싱 바디워시 1L_유자 바디워시 1L_유자 바디워시 1L
사주꾸마4
- text: 설화수 자음2종 기초 스킨케어 세트 신세계인터내셜
- text: '레이비 로얄젤리 바디로션 350ml 레이비 로얄젤리 바디로션 350ml '
- text: '[롯데백화점]입생로랑 더 슬림 벨벳 래디컬 5.302 브라운. 노 웨이 백 롯데백화점_'
- text: '[미샤] 데어 루즈 쉬어 슬릭 3.5g 펌킨 멜론_I6112 (주)에이블씨엔씨'
inference: true
model-index:
- name: SetFit with klue/roberta-base
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.838
name: Accuracy
SetFit with klue/roberta-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: klue/roberta-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 100 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
30 |
|
23 |
|
67 |
|
76 |
|
12 |
|
1 |
|
56 |
|
77 |
|
44 |
|
43 |
|
75 |
|
71 |
|
18 |
|
84 |
|
14 |
|
26 |
|
9 |
|
50 |
|
97 |
|
58 |
|
61 |
|
94 |
|
79 |
|
13 |
|
53 |
|
24 |
|
62 |
|
45 |
|
81 |
|
6 |
|
33 |
|
57 |
|
54 |
|
7 |
|
59 |
|
99 |
|
69 |
|
29 |
|
83 |
|
66 |
|
87 |
|
5 |
|
95 |
|
64 |
|
86 |
|
42 |
|
21 |
|
98 |
|
17 |
|
96 |
|
91 |
|
32 |
|
72 |
|
73 |
|
28 |
|
11 |
|
82 |
|
63 |
|
49 |
|
34 |
|
80 |
|
78 |
|
51 |
|
60 |
|
90 |
|
36 |
|
4 |
|
22 |
|
41 |
|
68 |
|
85 |
|
15 |
|
55 |
|
89 |
|
10 |
|
88 |
|
39 |
|
40 |
|
2 |
|
37 |
|
8 |
|
70 |
|
19 |
|
74 |
|
0 |
|
65 |
|
93 |
|
48 |
|
46 |
|
52 |
|
38 |
|
3 |
|
35 |
|
31 |
|
47 |
|
92 |
|
20 |
|
27 |
|
16 |
|
25 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.838 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_bt_test_org_notcate")
# Run inference
preds = model("설화수 자음2종 기초 스킨케어 세트 신세계인터내셜")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.9306 | 44 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 50 |
2 | 50 |
3 | 50 |
4 | 50 |
5 | 50 |
6 | 50 |
7 | 50 |
8 | 50 |
9 | 50 |
10 | 50 |
11 | 50 |
12 | 50 |
13 | 50 |
14 | 50 |
15 | 50 |
16 | 50 |
17 | 50 |
18 | 50 |
19 | 50 |
20 | 50 |
21 | 50 |
22 | 50 |
23 | 50 |
24 | 50 |
25 | 50 |
26 | 50 |
27 | 50 |
28 | 50 |
29 | 50 |
30 | 50 |
31 | 50 |
32 | 50 |
33 | 50 |
34 | 50 |
35 | 50 |
36 | 50 |
37 | 50 |
38 | 50 |
39 | 50 |
40 | 50 |
41 | 50 |
42 | 50 |
43 | 50 |
44 | 50 |
45 | 50 |
46 | 50 |
47 | 50 |
48 | 50 |
49 | 50 |
50 | 50 |
51 | 50 |
52 | 50 |
53 | 50 |
54 | 50 |
55 | 50 |
56 | 50 |
57 | 50 |
58 | 50 |
59 | 50 |
60 | 50 |
61 | 50 |
62 | 50 |
63 | 50 |
64 | 50 |
65 | 50 |
66 | 50 |
67 | 50 |
68 | 50 |
69 | 50 |
70 | 50 |
71 | 50 |
72 | 50 |
73 | 50 |
74 | 50 |
75 | 50 |
76 | 50 |
77 | 50 |
78 | 50 |
79 | 50 |
80 | 50 |
81 | 50 |
82 | 50 |
83 | 50 |
84 | 50 |
85 | 50 |
86 | 50 |
87 | 50 |
88 | 50 |
89 | 50 |
90 | 50 |
91 | 50 |
92 | 50 |
93 | 50 |
94 | 50 |
95 | 50 |
96 | 50 |
97 | 50 |
98 | 50 |
99 | 50 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 30
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.4522 | - |
0.0213 | 50 | 0.4018 | - |
0.0427 | 100 | 0.4033 | - |
0.0640 | 150 | 0.3722 | - |
0.0853 | 200 | 0.3512 | - |
0.1067 | 250 | 0.3069 | - |
0.1280 | 300 | 0.2868 | - |
0.1493 | 350 | 0.2839 | - |
0.1706 | 400 | 0.2691 | - |
0.1920 | 450 | 0.2493 | - |
0.2133 | 500 | 0.2338 | - |
0.2346 | 550 | 0.215 | - |
0.2560 | 600 | 0.1976 | - |
0.2773 | 650 | 0.1764 | - |
0.2986 | 700 | 0.1602 | - |
0.3200 | 750 | 0.1529 | - |
0.3413 | 800 | 0.1415 | - |
0.3626 | 850 | 0.1342 | - |
0.3840 | 900 | 0.1237 | - |
0.4053 | 950 | 0.1152 | - |
0.4266 | 1000 | 0.105 | - |
0.4480 | 1050 | 0.1014 | - |
0.4693 | 1100 | 0.0942 | - |
0.4906 | 1150 | 0.0906 | - |
0.5119 | 1200 | 0.0862 | - |
0.5333 | 1250 | 0.0809 | - |
0.5546 | 1300 | 0.078 | - |
0.5759 | 1350 | 0.075 | - |
0.5973 | 1400 | 0.0724 | - |
0.6186 | 1450 | 0.0691 | - |
0.6399 | 1500 | 0.0625 | - |
0.6613 | 1550 | 0.0608 | - |
0.6826 | 1600 | 0.055 | - |
0.7039 | 1650 | 0.0537 | - |
0.7253 | 1700 | 0.0505 | - |
0.7466 | 1750 | 0.05 | - |
0.7679 | 1800 | 0.0507 | - |
0.7892 | 1850 | 0.0454 | - |
0.8106 | 1900 | 0.0443 | - |
0.8319 | 1950 | 0.0427 | - |
0.8532 | 2000 | 0.0414 | - |
0.8746 | 2050 | 0.0425 | - |
0.8959 | 2100 | 0.0357 | - |
0.9172 | 2150 | 0.0382 | - |
0.9386 | 2200 | 0.035 | - |
0.9599 | 2250 | 0.0348 | - |
0.9812 | 2300 | 0.0365 | - |
1.0026 | 2350 | 0.0347 | - |
1.0239 | 2400 | 0.0317 | - |
1.0452 | 2450 | 0.0315 | - |
1.0666 | 2500 | 0.0311 | - |
1.0879 | 2550 | 0.0279 | - |
1.1092 | 2600 | 0.0268 | - |
1.1305 | 2650 | 0.0269 | - |
1.1519 | 2700 | 0.0287 | - |
1.1732 | 2750 | 0.0252 | - |
1.1945 | 2800 | 0.0271 | - |
1.2159 | 2850 | 0.0247 | - |
1.2372 | 2900 | 0.0247 | - |
1.2585 | 2950 | 0.0239 | - |
1.2799 | 3000 | 0.0216 | - |
1.3012 | 3050 | 0.0249 | - |
1.3225 | 3100 | 0.0202 | - |
1.3439 | 3150 | 0.0228 | - |
1.3652 | 3200 | 0.0216 | - |
1.3865 | 3250 | 0.0222 | - |
1.4078 | 3300 | 0.0214 | - |
1.4292 | 3350 | 0.0211 | - |
1.4505 | 3400 | 0.0195 | - |
1.4718 | 3450 | 0.0208 | - |
1.4932 | 3500 | 0.0178 | - |
1.5145 | 3550 | 0.0173 | - |
1.5358 | 3600 | 0.0183 | - |
1.5572 | 3650 | 0.0189 | - |
1.5785 | 3700 | 0.0173 | - |
1.5998 | 3750 | 0.0167 | - |
1.6212 | 3800 | 0.0185 | - |
1.6425 | 3850 | 0.0162 | - |
1.6638 | 3900 | 0.0156 | - |
1.6852 | 3950 | 0.0165 | - |
1.7065 | 4000 | 0.0143 | - |
1.7278 | 4050 | 0.0148 | - |
1.7491 | 4100 | 0.0159 | - |
1.7705 | 4150 | 0.0156 | - |
1.7918 | 4200 | 0.0156 | - |
1.8131 | 4250 | 0.0159 | - |
1.8345 | 4300 | 0.0141 | - |
1.8558 | 4350 | 0.0148 | - |
1.8771 | 4400 | 0.0137 | - |
1.8985 | 4450 | 0.0121 | - |
1.9198 | 4500 | 0.0139 | - |
1.9411 | 4550 | 0.0124 | - |
1.9625 | 4600 | 0.0127 | - |
1.9838 | 4650 | 0.0133 | - |
2.0051 | 4700 | 0.0137 | - |
2.0265 | 4750 | 0.0124 | - |
2.0478 | 4800 | 0.0104 | - |
2.0691 | 4850 | 0.0132 | - |
2.0904 | 4900 | 0.0126 | - |
2.1118 | 4950 | 0.013 | - |
2.1331 | 5000 | 0.0119 | - |
2.1544 | 5050 | 0.0115 | - |
2.1758 | 5100 | 0.0104 | - |
2.1971 | 5150 | 0.0092 | - |
2.2184 | 5200 | 0.0097 | - |
2.2398 | 5250 | 0.0127 | - |
2.2611 | 5300 | 0.0096 | - |
2.2824 | 5350 | 0.0101 | - |
2.3038 | 5400 | 0.0099 | - |
2.3251 | 5450 | 0.0105 | - |
2.3464 | 5500 | 0.0077 | - |
2.3677 | 5550 | 0.0096 | - |
2.3891 | 5600 | 0.0097 | - |
2.4104 | 5650 | 0.0084 | - |
2.4317 | 5700 | 0.0107 | - |
2.4531 | 5750 | 0.0105 | - |
2.4744 | 5800 | 0.0095 | - |
2.4957 | 5850 | 0.0077 | - |
2.5171 | 5900 | 0.0088 | - |
2.5384 | 5950 | 0.0101 | - |
2.5597 | 6000 | 0.0097 | - |
2.5811 | 6050 | 0.0073 | - |
2.6024 | 6100 | 0.0094 | - |
2.6237 | 6150 | 0.0096 | - |
2.6451 | 6200 | 0.0081 | - |
2.6664 | 6250 | 0.0098 | - |
2.6877 | 6300 | 0.0107 | - |
2.7090 | 6350 | 0.0089 | - |
2.7304 | 6400 | 0.0078 | - |
2.7517 | 6450 | 0.0074 | - |
2.7730 | 6500 | 0.0085 | - |
2.7944 | 6550 | 0.008 | - |
2.8157 | 6600 | 0.0083 | - |
2.8370 | 6650 | 0.0065 | - |
2.8584 | 6700 | 0.0065 | - |
2.8797 | 6750 | 0.0073 | - |
2.9010 | 6800 | 0.0081 | - |
2.9224 | 6850 | 0.007 | - |
2.9437 | 6900 | 0.0074 | - |
2.9650 | 6950 | 0.0067 | - |
2.9863 | 7000 | 0.0074 | - |
3.0077 | 7050 | 0.0061 | - |
3.0290 | 7100 | 0.0084 | - |
3.0503 | 7150 | 0.0095 | - |
3.0717 | 7200 | 0.0071 | - |
3.0930 | 7250 | 0.0073 | - |
3.1143 | 7300 | 0.0075 | - |
3.1357 | 7350 | 0.0074 | - |
3.1570 | 7400 | 0.0058 | - |
3.1783 | 7450 | 0.0066 | - |
3.1997 | 7500 | 0.0054 | - |
3.2210 | 7550 | 0.0055 | - |
3.2423 | 7600 | 0.0047 | - |
3.2637 | 7650 | 0.0072 | - |
3.2850 | 7700 | 0.0076 | - |
3.3063 | 7750 | 0.0056 | - |
3.3276 | 7800 | 0.0057 | - |
3.3490 | 7850 | 0.0049 | - |
3.3703 | 7900 | 0.0055 | - |
3.3916 | 7950 | 0.0043 | - |
3.4130 | 8000 | 0.0044 | - |
3.4343 | 8050 | 0.0059 | - |
3.4556 | 8100 | 0.0057 | - |
3.4770 | 8150 | 0.0057 | - |
3.4983 | 8200 | 0.0076 | - |
3.5196 | 8250 | 0.0067 | - |
3.5410 | 8300 | 0.0047 | - |
3.5623 | 8350 | 0.0051 | - |
3.5836 | 8400 | 0.0061 | - |
3.6049 | 8450 | 0.0055 | - |
3.6263 | 8500 | 0.0063 | - |
3.6476 | 8550 | 0.0048 | - |
3.6689 | 8600 | 0.005 | - |
3.6903 | 8650 | 0.0064 | - |
3.7116 | 8700 | 0.0043 | - |
3.7329 | 8750 | 0.0052 | - |
3.7543 | 8800 | 0.0058 | - |
3.7756 | 8850 | 0.004 | - |
3.7969 | 8900 | 0.0048 | - |
3.8183 | 8950 | 0.0042 | - |
3.8396 | 9000 | 0.0057 | - |
3.8609 | 9050 | 0.0064 | - |
3.8823 | 9100 | 0.0059 | - |
3.9036 | 9150 | 0.0049 | - |
3.9249 | 9200 | 0.0053 | - |
3.9462 | 9250 | 0.0049 | - |
3.9676 | 9300 | 0.0042 | - |
3.9889 | 9350 | 0.004 | - |
4.0102 | 9400 | 0.0035 | - |
4.0316 | 9450 | 0.0041 | - |
4.0529 | 9500 | 0.0045 | - |
4.0742 | 9550 | 0.0047 | - |
4.0956 | 9600 | 0.0039 | - |
4.1169 | 9650 | 0.0035 | - |
4.1382 | 9700 | 0.0031 | - |
4.1596 | 9750 | 0.0044 | - |
4.1809 | 9800 | 0.0033 | - |
4.2022 | 9850 | 0.0048 | - |
4.2235 | 9900 | 0.0038 | - |
4.2449 | 9950 | 0.0039 | - |
4.2662 | 10000 | 0.0039 | - |
4.2875 | 10050 | 0.0039 | - |
4.3089 | 10100 | 0.005 | - |
4.3302 | 10150 | 0.0043 | - |
4.3515 | 10200 | 0.0058 | - |
4.3729 | 10250 | 0.0052 | - |
4.3942 | 10300 | 0.0034 | - |
4.4155 | 10350 | 0.0031 | - |
4.4369 | 10400 | 0.0039 | - |
4.4582 | 10450 | 0.0038 | - |
4.4795 | 10500 | 0.0033 | - |
4.5009 | 10550 | 0.0034 | - |
4.5222 | 10600 | 0.004 | - |
4.5435 | 10650 | 0.0032 | - |
4.5648 | 10700 | 0.003 | - |
4.5862 | 10750 | 0.0028 | - |
4.6075 | 10800 | 0.0031 | - |
4.6288 | 10850 | 0.0032 | - |
4.6502 | 10900 | 0.0027 | - |
4.6715 | 10950 | 0.0031 | - |
4.6928 | 11000 | 0.0037 | - |
4.7142 | 11050 | 0.0021 | - |
4.7355 | 11100 | 0.0036 | - |
4.7568 | 11150 | 0.0044 | - |
4.7782 | 11200 | 0.0039 | - |
4.7995 | 11250 | 0.0041 | - |
4.8208 | 11300 | 0.0038 | - |
4.8422 | 11350 | 0.0034 | - |
4.8635 | 11400 | 0.0041 | - |
4.8848 | 11450 | 0.0039 | - |
4.9061 | 11500 | 0.0037 | - |
4.9275 | 11550 | 0.0046 | - |
4.9488 | 11600 | 0.0043 | - |
4.9701 | 11650 | 0.003 | - |
4.9915 | 11700 | 0.0036 | - |
5.0128 | 11750 | 0.0028 | - |
5.0341 | 11800 | 0.0026 | - |
5.0555 | 11850 | 0.0031 | - |
5.0768 | 11900 | 0.0033 | - |
5.0981 | 11950 | 0.0027 | - |
5.1195 | 12000 | 0.0028 | - |
5.1408 | 12050 | 0.0024 | - |
5.1621 | 12100 | 0.0024 | - |
5.1834 | 12150 | 0.003 | - |
5.2048 | 12200 | 0.0017 | - |
5.2261 | 12250 | 0.0029 | - |
5.2474 | 12300 | 0.0031 | - |
5.2688 | 12350 | 0.003 | - |
5.2901 | 12400 | 0.0025 | - |
5.3114 | 12450 | 0.0025 | - |
5.3328 | 12500 | 0.0031 | - |
5.3541 | 12550 | 0.0043 | - |
5.3754 | 12600 | 0.004 | - |
5.3968 | 12650 | 0.0033 | - |
5.4181 | 12700 | 0.0031 | - |
5.4394 | 12750 | 0.0037 | - |
5.4608 | 12800 | 0.0041 | - |
5.4821 | 12850 | 0.0025 | - |
5.5034 | 12900 | 0.0031 | - |
5.5247 | 12950 | 0.0025 | - |
5.5461 | 13000 | 0.0023 | - |
5.5674 | 13050 | 0.0033 | - |
5.5887 | 13100 | 0.0029 | - |
5.6101 | 13150 | 0.0024 | - |
5.6314 | 13200 | 0.0025 | - |
5.6527 | 13250 | 0.0027 | - |
5.6741 | 13300 | 0.0019 | - |
5.6954 | 13350 | 0.0018 | - |
5.7167 | 13400 | 0.0026 | - |
5.7381 | 13450 | 0.0031 | - |
5.7594 | 13500 | 0.0031 | - |
5.7807 | 13550 | 0.0043 | - |
5.8020 | 13600 | 0.0035 | - |
5.8234 | 13650 | 0.0043 | - |
5.8447 | 13700 | 0.004 | - |
5.8660 | 13750 | 0.0037 | - |
5.8874 | 13800 | 0.0024 | - |
5.9087 | 13850 | 0.0032 | - |
5.9300 | 13900 | 0.0037 | - |
5.9514 | 13950 | 0.003 | - |
5.9727 | 14000 | 0.0025 | - |
5.9940 | 14050 | 0.003 | - |
6.0154 | 14100 | 0.0028 | - |
6.0367 | 14150 | 0.0026 | - |
6.0580 | 14200 | 0.0019 | - |
6.0794 | 14250 | 0.0022 | - |
6.1007 | 14300 | 0.0022 | - |
6.1220 | 14350 | 0.0025 | - |
6.1433 | 14400 | 0.0019 | - |
6.1647 | 14450 | 0.0019 | - |
6.1860 | 14500 | 0.0026 | - |
6.2073 | 14550 | 0.0018 | - |
6.2287 | 14600 | 0.0011 | - |
6.25 | 14650 | 0.0026 | - |
6.2713 | 14700 | 0.0014 | - |
6.2927 | 14750 | 0.0033 | - |
6.3140 | 14800 | 0.003 | - |
6.3353 | 14850 | 0.0023 | - |
6.3567 | 14900 | 0.0033 | - |
6.3780 | 14950 | 0.0022 | - |
6.3993 | 15000 | 0.0023 | - |
6.4206 | 15050 | 0.0021 | - |
6.4420 | 15100 | 0.0017 | - |
6.4633 | 15150 | 0.0025 | - |
6.4846 | 15200 | 0.0011 | - |
6.5060 | 15250 | 0.0023 | - |
6.5273 | 15300 | 0.0026 | - |
6.5486 | 15350 | 0.0018 | - |
6.5700 | 15400 | 0.0026 | - |
6.5913 | 15450 | 0.0028 | - |
6.6126 | 15500 | 0.0035 | - |
6.6340 | 15550 | 0.0026 | - |
6.6553 | 15600 | 0.0019 | - |
6.6766 | 15650 | 0.0017 | - |
6.6980 | 15700 | 0.0022 | - |
6.7193 | 15750 | 0.0021 | - |
6.7406 | 15800 | 0.0014 | - |
6.7619 | 15850 | 0.0016 | - |
6.7833 | 15900 | 0.0025 | - |
6.8046 | 15950 | 0.002 | - |
6.8259 | 16000 | 0.0019 | - |
6.8473 | 16050 | 0.0025 | - |
6.8686 | 16100 | 0.007 | - |
6.8899 | 16150 | 0.0041 | - |
6.9113 | 16200 | 0.0034 | - |
6.9326 | 16250 | 0.0026 | - |
6.9539 | 16300 | 0.0019 | - |
6.9753 | 16350 | 0.0021 | - |
6.9966 | 16400 | 0.0024 | - |
7.0179 | 16450 | 0.0023 | - |
7.0392 | 16500 | 0.0014 | - |
7.0606 | 16550 | 0.0023 | - |
7.0819 | 16600 | 0.002 | - |
7.1032 | 16650 | 0.0017 | - |
7.1246 | 16700 | 0.0026 | - |
7.1459 | 16750 | 0.0027 | - |
7.1672 | 16800 | 0.0018 | - |
7.1886 | 16850 | 0.0016 | - |
7.2099 | 16900 | 0.0021 | - |
7.2312 | 16950 | 0.0015 | - |
7.2526 | 17000 | 0.0017 | - |
7.2739 | 17050 | 0.0013 | - |
7.2952 | 17100 | 0.0023 | - |
7.3166 | 17150 | 0.0023 | - |
7.3379 | 17200 | 0.0019 | - |
7.3592 | 17250 | 0.0017 | - |
7.3805 | 17300 | 0.0017 | - |
7.4019 | 17350 | 0.002 | - |
7.4232 | 17400 | 0.0024 | - |
7.4445 | 17450 | 0.0013 | - |
7.4659 | 17500 | 0.0012 | - |
7.4872 | 17550 | 0.0016 | - |
7.5085 | 17600 | 0.0014 | - |
7.5299 | 17650 | 0.0014 | - |
7.5512 | 17700 | 0.0018 | - |
7.5725 | 17750 | 0.0012 | - |
7.5939 | 17800 | 0.0015 | - |
7.6152 | 17850 | 0.0014 | - |
7.6365 | 17900 | 0.0013 | - |
7.6578 | 17950 | 0.0015 | - |
7.6792 | 18000 | 0.0024 | - |
7.7005 | 18050 | 0.0017 | - |
7.7218 | 18100 | 0.0014 | - |
7.7432 | 18150 | 0.0009 | - |
7.7645 | 18200 | 0.0015 | - |
7.7858 | 18250 | 0.0011 | - |
7.8072 | 18300 | 0.0015 | - |
7.8285 | 18350 | 0.0028 | - |
7.8498 | 18400 | 0.0038 | - |
7.8712 | 18450 | 0.0025 | - |
7.8925 | 18500 | 0.0023 | - |
7.9138 | 18550 | 0.0025 | - |
7.9352 | 18600 | 0.002 | - |
7.9565 | 18650 | 0.0015 | - |
7.9778 | 18700 | 0.0013 | - |
7.9991 | 18750 | 0.0016 | - |
8.0205 | 18800 | 0.0017 | - |
8.0418 | 18850 | 0.0017 | - |
8.0631 | 18900 | 0.0009 | - |
8.0845 | 18950 | 0.0011 | - |
8.1058 | 19000 | 0.0014 | - |
8.1271 | 19050 | 0.0016 | - |
8.1485 | 19100 | 0.0012 | - |
8.1698 | 19150 | 0.002 | - |
8.1911 | 19200 | 0.0012 | - |
8.2125 | 19250 | 0.0018 | - |
8.2338 | 19300 | 0.0016 | - |
8.2551 | 19350 | 0.0009 | - |
8.2765 | 19400 | 0.0014 | - |
8.2978 | 19450 | 0.0011 | - |
8.3191 | 19500 | 0.0015 | - |
8.3404 | 19550 | 0.0013 | - |
8.3618 | 19600 | 0.0018 | - |
8.3831 | 19650 | 0.0011 | - |
8.4044 | 19700 | 0.001 | - |
8.4258 | 19750 | 0.0013 | - |
8.4471 | 19800 | 0.0014 | - |
8.4684 | 19850 | 0.0009 | - |
8.4898 | 19900 | 0.0013 | - |
8.5111 | 19950 | 0.0012 | - |
8.5324 | 20000 | 0.0013 | - |
8.5538 | 20050 | 0.0012 | - |
8.5751 | 20100 | 0.0018 | - |
8.5964 | 20150 | 0.0012 | - |
8.6177 | 20200 | 0.0018 | - |
8.6391 | 20250 | 0.0016 | - |
8.6604 | 20300 | 0.0018 | - |
8.6817 | 20350 | 0.0016 | - |
8.7031 | 20400 | 0.0014 | - |
8.7244 | 20450 | 0.0013 | - |
8.7457 | 20500 | 0.0014 | - |
8.7671 | 20550 | 0.0012 | - |
8.7884 | 20600 | 0.0007 | - |
8.8097 | 20650 | 0.0011 | - |
8.8311 | 20700 | 0.0007 | - |
8.8524 | 20750 | 0.0013 | - |
8.8737 | 20800 | 0.0019 | - |
8.8951 | 20850 | 0.001 | - |
8.9164 | 20900 | 0.0012 | - |
8.9377 | 20950 | 0.0014 | - |
8.9590 | 21000 | 0.0021 | - |
8.9804 | 21050 | 0.0015 | - |
9.0017 | 21100 | 0.0007 | - |
9.0230 | 21150 | 0.0007 | - |
9.0444 | 21200 | 0.0011 | - |
9.0657 | 21250 | 0.0016 | - |
9.0870 | 21300 | 0.0008 | - |
9.1084 | 21350 | 0.0012 | - |
9.1297 | 21400 | 0.0009 | - |
9.1510 | 21450 | 0.0011 | - |
9.1724 | 21500 | 0.0011 | - |
9.1937 | 21550 | 0.0007 | - |
9.2150 | 21600 | 0.0011 | - |
9.2363 | 21650 | 0.0005 | - |
9.2577 | 21700 | 0.0013 | - |
9.2790 | 21750 | 0.0029 | - |
9.3003 | 21800 | 0.002 | - |
9.3217 | 21850 | 0.0017 | - |
9.3430 | 21900 | 0.0014 | - |
9.3643 | 21950 | 0.0017 | - |
9.3857 | 22000 | 0.0018 | - |
9.4070 | 22050 | 0.0018 | - |
9.4283 | 22100 | 0.0011 | - |
9.4497 | 22150 | 0.001 | - |
9.4710 | 22200 | 0.0007 | - |
9.4923 | 22250 | 0.0006 | - |
9.5137 | 22300 | 0.0013 | - |
9.5350 | 22350 | 0.001 | - |
9.5563 | 22400 | 0.0009 | - |
9.5776 | 22450 | 0.0008 | - |
9.5990 | 22500 | 0.0005 | - |
9.6203 | 22550 | 0.0006 | - |
9.6416 | 22600 | 0.0009 | - |
9.6630 | 22650 | 0.001 | - |
9.6843 | 22700 | 0.0006 | - |
9.7056 | 22750 | 0.0009 | - |
9.7270 | 22800 | 0.0007 | - |
9.7483 | 22850 | 0.0007 | - |
9.7696 | 22900 | 0.0006 | - |
9.7910 | 22950 | 0.0007 | - |
9.8123 | 23000 | 0.001 | - |
9.8336 | 23050 | 0.001 | - |
9.8549 | 23100 | 0.0005 | - |
9.8763 | 23150 | 0.0009 | - |
9.8976 | 23200 | 0.0013 | - |
9.9189 | 23250 | 0.0009 | - |
9.9403 | 23300 | 0.001 | - |
9.9616 | 23350 | 0.0012 | - |
9.9829 | 23400 | 0.0009 | - |
10.0043 | 23450 | 0.0004 | - |
10.0256 | 23500 | 0.0007 | - |
10.0469 | 23550 | 0.0007 | - |
10.0683 | 23600 | 0.0003 | - |
10.0896 | 23650 | 0.0006 | - |
10.1109 | 23700 | 0.0009 | - |
10.1323 | 23750 | 0.0007 | - |
10.1536 | 23800 | 0.0007 | - |
10.1749 | 23850 | 0.001 | - |
10.1962 | 23900 | 0.0004 | - |
10.2176 | 23950 | 0.0009 | - |
10.2389 | 24000 | 0.0007 | - |
10.2602 | 24050 | 0.0007 | - |
10.2816 | 24100 | 0.0011 | - |
10.3029 | 24150 | 0.001 | - |
10.3242 | 24200 | 0.0007 | - |
10.3456 | 24250 | 0.0011 | - |
10.3669 | 24300 | 0.001 | - |
10.3882 | 24350 | 0.0008 | - |
10.4096 | 24400 | 0.0008 | - |
10.4309 | 24450 | 0.0019 | - |
10.4522 | 24500 | 0.0016 | - |
10.4735 | 24550 | 0.0015 | - |
10.4949 | 24600 | 0.0014 | - |
10.5162 | 24650 | 0.0013 | - |
10.5375 | 24700 | 0.0018 | - |
10.5589 | 24750 | 0.0011 | - |
10.5802 | 24800 | 0.0014 | - |
10.6015 | 24850 | 0.0012 | - |
10.6229 | 24900 | 0.0012 | - |
10.6442 | 24950 | 0.0009 | - |
10.6655 | 25000 | 0.0009 | - |
10.6869 | 25050 | 0.0008 | - |
10.7082 | 25100 | 0.0016 | - |
10.7295 | 25150 | 0.0007 | - |
10.7509 | 25200 | 0.0007 | - |
10.7722 | 25250 | 0.0008 | - |
10.7935 | 25300 | 0.0011 | - |
10.8148 | 25350 | 0.0007 | - |
10.8362 | 25400 | 0.0009 | - |
10.8575 | 25450 | 0.0006 | - |
10.8788 | 25500 | 0.0005 | - |
10.9002 | 25550 | 0.0011 | - |
10.9215 | 25600 | 0.0006 | - |
10.9428 | 25650 | 0.0009 | - |
10.9642 | 25700 | 0.001 | - |
10.9855 | 25750 | 0.0009 | - |
11.0068 | 25800 | 0.001 | - |
11.0282 | 25850 | 0.0006 | - |
11.0495 | 25900 | 0.0011 | - |
11.0708 | 25950 | 0.0008 | - |
11.0922 | 26000 | 0.0012 | - |
11.1135 | 26050 | 0.0006 | - |
11.1348 | 26100 | 0.0009 | - |
11.1561 | 26150 | 0.0012 | - |
11.1775 | 26200 | 0.0007 | - |
11.1988 | 26250 | 0.0004 | - |
11.2201 | 26300 | 0.0007 | - |
11.2415 | 26350 | 0.001 | - |
11.2628 | 26400 | 0.0006 | - |
11.2841 | 26450 | 0.0006 | - |
11.3055 | 26500 | 0.0007 | - |
11.3268 | 26550 | 0.0006 | - |
11.3481 | 26600 | 0.0006 | - |
11.3695 | 26650 | 0.0004 | - |
11.3908 | 26700 | 0.0004 | - |
11.4121 | 26750 | 0.0011 | - |
11.4334 | 26800 | 0.0009 | - |
11.4548 | 26850 | 0.0014 | - |
11.4761 | 26900 | 0.0008 | - |
11.4974 | 26950 | 0.0004 | - |
11.5188 | 27000 | 0.0007 | - |
11.5401 | 27050 | 0.0002 | - |
11.5614 | 27100 | 0.0007 | - |
11.5828 | 27150 | 0.0008 | - |
11.6041 | 27200 | 0.0003 | - |
11.6254 | 27250 | 0.0007 | - |
11.6468 | 27300 | 0.0005 | - |
11.6681 | 27350 | 0.0003 | - |
11.6894 | 27400 | 0.0014 | - |
11.7108 | 27450 | 0.0007 | - |
11.7321 | 27500 | 0.0006 | - |
11.7534 | 27550 | 0.0004 | - |
11.7747 | 27600 | 0.0008 | - |
11.7961 | 27650 | 0.0006 | - |
11.8174 | 27700 | 0.0018 | - |
11.8387 | 27750 | 0.0016 | - |
11.8601 | 27800 | 0.0008 | - |
11.8814 | 27850 | 0.0007 | - |
11.9027 | 27900 | 0.001 | - |
11.9241 | 27950 | 0.0007 | - |
11.9454 | 28000 | 0.0001 | - |
11.9667 | 28050 | 0.0005 | - |
11.9881 | 28100 | 0.0008 | - |
12.0094 | 28150 | 0.0009 | - |
12.0307 | 28200 | 0.0006 | - |
12.0520 | 28250 | 0.0007 | - |
12.0734 | 28300 | 0.0009 | - |
12.0947 | 28350 | 0.0008 | - |
12.1160 | 28400 | 0.0006 | - |
12.1374 | 28450 | 0.0009 | - |
12.1587 | 28500 | 0.0006 | - |
12.1800 | 28550 | 0.0007 | - |
12.2014 | 28600 | 0.0009 | - |
12.2227 | 28650 | 0.0007 | - |
12.2440 | 28700 | 0.0003 | - |
12.2654 | 28750 | 0.0005 | - |
12.2867 | 28800 | 0.0004 | - |
12.3080 | 28850 | 0.001 | - |
12.3294 | 28900 | 0.0003 | - |
12.3507 | 28950 | 0.0009 | - |
12.3720 | 29000 | 0.0005 | - |
12.3933 | 29050 | 0.0013 | - |
12.4147 | 29100 | 0.0007 | - |
12.4360 | 29150 | 0.0007 | - |
12.4573 | 29200 | 0.0003 | - |
12.4787 | 29250 | 0.0008 | - |
12.5 | 29300 | 0.0008 | - |
12.5213 | 29350 | 0.0005 | - |
12.5427 | 29400 | 0.001 | - |
12.5640 | 29450 | 0.0005 | - |
12.5853 | 29500 | 0.0008 | - |
12.6067 | 29550 | 0.0004 | - |
12.6280 | 29600 | 0.0012 | - |
12.6493 | 29650 | 0.0012 | - |
12.6706 | 29700 | 0.0008 | - |
12.6920 | 29750 | 0.0004 | - |
12.7133 | 29800 | 0.0002 | - |
12.7346 | 29850 | 0.0007 | - |
12.7560 | 29900 | 0.0008 | - |
12.7773 | 29950 | 0.0004 | - |
12.7986 | 30000 | 0.0006 | - |
12.8200 | 30050 | 0.0015 | - |
12.8413 | 30100 | 0.0003 | - |
12.8626 | 30150 | 0.0003 | - |
12.8840 | 30200 | 0.0011 | - |
12.9053 | 30250 | 0.0004 | - |
12.9266 | 30300 | 0.0003 | - |
12.9480 | 30350 | 0.0009 | - |
12.9693 | 30400 | 0.0008 | - |
12.9906 | 30450 | 0.0006 | - |
13.0119 | 30500 | 0.0002 | - |
13.0333 | 30550 | 0.0008 | - |
13.0546 | 30600 | 0.0003 | - |
13.0759 | 30650 | 0.0007 | - |
13.0973 | 30700 | 0.0004 | - |
13.1186 | 30750 | 0.0007 | - |
13.1399 | 30800 | 0.0002 | - |
13.1613 | 30850 | 0.0001 | - |
13.1826 | 30900 | 0.0007 | - |
13.2039 | 30950 | 0.0008 | - |
13.2253 | 31000 | 0.0005 | - |
13.2466 | 31050 | 0.0008 | - |
13.2679 | 31100 | 0.001 | - |
13.2892 | 31150 | 0.0005 | - |
13.3106 | 31200 | 0.0006 | - |
13.3319 | 31250 | 0.0004 | - |
13.3532 | 31300 | 0.0008 | - |
13.3746 | 31350 | 0.0009 | - |
13.3959 | 31400 | 0.0015 | - |
13.4172 | 31450 | 0.0005 | - |
13.4386 | 31500 | 0.001 | - |
13.4599 | 31550 | 0.0004 | - |
13.4812 | 31600 | 0.0007 | - |
13.5026 | 31650 | 0.0004 | - |
13.5239 | 31700 | 0.0006 | - |
13.5452 | 31750 | 0.0003 | - |
13.5666 | 31800 | 0.0003 | - |
13.5879 | 31850 | 0.0006 | - |
13.6092 | 31900 | 0.0002 | - |
13.6305 | 31950 | 0.0006 | - |
13.6519 | 32000 | 0.0004 | - |
13.6732 | 32050 | 0.0005 | - |
13.6945 | 32100 | 0.0006 | - |
13.7159 | 32150 | 0.0003 | - |
13.7372 | 32200 | 0.0005 | - |
13.7585 | 32250 | 0.001 | - |
13.7799 | 32300 | 0.0003 | - |
13.8012 | 32350 | 0.0006 | - |
13.8225 | 32400 | 0.0005 | - |
13.8439 | 32450 | 0.0003 | - |
13.8652 | 32500 | 0.0004 | - |
13.8865 | 32550 | 0.0008 | - |
13.9078 | 32600 | 0.0007 | - |
13.9292 | 32650 | 0.0002 | - |
13.9505 | 32700 | 0.0004 | - |
13.9718 | 32750 | 0.0004 | - |
13.9932 | 32800 | 0.0002 | - |
14.0145 | 32850 | 0.0007 | - |
14.0358 | 32900 | 0.0002 | - |
14.0572 | 32950 | 0.0002 | - |
14.0785 | 33000 | 0.0005 | - |
14.0998 | 33050 | 0.0004 | - |
14.1212 | 33100 | 0.0001 | - |
14.1425 | 33150 | 0.0005 | - |
14.1638 | 33200 | 0.0002 | - |
14.1852 | 33250 | 0.0004 | - |
14.2065 | 33300 | 0.0004 | - |
14.2278 | 33350 | 0.0008 | - |
14.2491 | 33400 | 0.0005 | - |
14.2705 | 33450 | 0.0004 | - |
14.2918 | 33500 | 0.0004 | - |
14.3131 | 33550 | 0.0007 | - |
14.3345 | 33600 | 0.0007 | - |
14.3558 | 33650 | 0.0007 | - |
14.3771 | 33700 | 0.0007 | - |
14.3985 | 33750 | 0.0007 | - |
14.4198 | 33800 | 0.0005 | - |
14.4411 | 33850 | 0.0004 | - |
14.4625 | 33900 | 0.0005 | - |
14.4838 | 33950 | 0.0002 | - |
14.5051 | 34000 | 0.0008 | - |
14.5265 | 34050 | 0.0002 | - |
14.5478 | 34100 | 0.0002 | - |
14.5691 | 34150 | 0.0004 | - |
14.5904 | 34200 | 0.0002 | - |
14.6118 | 34250 | 0.0004 | - |
14.6331 | 34300 | 0.0004 | - |
14.6544 | 34350 | 0.0004 | - |
14.6758 | 34400 | 0.0007 | - |
14.6971 | 34450 | 0.0004 | - |
14.7184 | 34500 | 0.0003 | - |
14.7398 | 34550 | 0.0007 | - |
14.7611 | 34600 | 0.0005 | - |
14.7824 | 34650 | 0.0002 | - |
14.8038 | 34700 | 0.0001 | - |
14.8251 | 34750 | 0.0006 | - |
14.8464 | 34800 | 0.0006 | - |
14.8677 | 34850 | 0.0006 | - |
14.8891 | 34900 | 0.0009 | - |
14.9104 | 34950 | 0.0007 | - |
14.9317 | 35000 | 0.0004 | - |
14.9531 | 35050 | 0.0002 | - |
14.9744 | 35100 | 0.0001 | - |
14.9957 | 35150 | 0.0001 | - |
15.0171 | 35200 | 0.0009 | - |
15.0384 | 35250 | 0.0006 | - |
15.0597 | 35300 | 0.0002 | - |
15.0811 | 35350 | 0.0003 | - |
15.1024 | 35400 | 0.0004 | - |
15.1237 | 35450 | 0.0005 | - |
15.1451 | 35500 | 0.0002 | - |
15.1664 | 35550 | 0.0003 | - |
15.1877 | 35600 | 0.0003 | - |
15.2090 | 35650 | 0.0004 | - |
15.2304 | 35700 | 0.0003 | - |
15.2517 | 35750 | 0.0002 | - |
15.2730 | 35800 | 0.0003 | - |
15.2944 | 35850 | 0.0007 | - |
15.3157 | 35900 | 0.0002 | - |
15.3370 | 35950 | 0.0003 | - |
15.3584 | 36000 | 0.0001 | - |
15.3797 | 36050 | 0.0002 | - |
15.4010 | 36100 | 0.0007 | - |
15.4224 | 36150 | 0.0001 | - |
15.4437 | 36200 | 0.0004 | - |
15.4650 | 36250 | 0.0003 | - |
15.4863 | 36300 | 0.0003 | - |
15.5077 | 36350 | 0.0008 | - |
15.5290 | 36400 | 0.0001 | - |
15.5503 | 36450 | 0.0001 | - |
15.5717 | 36500 | 0.0003 | - |
15.5930 | 36550 | 0.0003 | - |
15.6143 | 36600 | 0.0003 | - |
15.6357 | 36650 | 0.0002 | - |
15.6570 | 36700 | 0.0001 | - |
15.6783 | 36750 | 0.0005 | - |
15.6997 | 36800 | 0.0001 | - |
15.7210 | 36850 | 0.0001 | - |
15.7423 | 36900 | 0.0001 | - |
15.7637 | 36950 | 0.0001 | - |
15.7850 | 37000 | 0.0001 | - |
15.8063 | 37050 | 0.0003 | - |
15.8276 | 37100 | 0.0002 | - |
15.8490 | 37150 | 0.0001 | - |
15.8703 | 37200 | 0.0002 | - |
15.8916 | 37250 | 0.0001 | - |
15.9130 | 37300 | 0.0002 | - |
15.9343 | 37350 | 0.0001 | - |
15.9556 | 37400 | 0.0002 | - |
15.9770 | 37450 | 0.0003 | - |
15.9983 | 37500 | 0.0003 | - |
16.0196 | 37550 | 0.0002 | - |
16.0410 | 37600 | 0.0002 | - |
16.0623 | 37650 | 0.0001 | - |
16.0836 | 37700 | 0.0003 | - |
16.1049 | 37750 | 0.0001 | - |
16.1263 | 37800 | 0.0001 | - |
16.1476 | 37850 | 0.0004 | - |
16.1689 | 37900 | 0.0001 | - |
16.1903 | 37950 | 0.0001 | - |
16.2116 | 38000 | 0.0002 | - |
16.2329 | 38050 | 0.0004 | - |
16.2543 | 38100 | 0.0002 | - |
16.2756 | 38150 | 0.0001 | - |
16.2969 | 38200 | 0.0001 | - |
16.3183 | 38250 | 0.0005 | - |
16.3396 | 38300 | 0.0002 | - |
16.3609 | 38350 | 0.0003 | - |
16.3823 | 38400 | 0.0005 | - |
16.4036 | 38450 | 0.0001 | - |
16.4249 | 38500 | 0.0001 | - |
16.4462 | 38550 | 0.0002 | - |
16.4676 | 38600 | 0.0004 | - |
16.4889 | 38650 | 0.0006 | - |
16.5102 | 38700 | 0.0002 | - |
16.5316 | 38750 | 0.0003 | - |
16.5529 | 38800 | 0.0004 | - |
16.5742 | 38850 | 0.0002 | - |
16.5956 | 38900 | 0.0001 | - |
16.6169 | 38950 | 0.0001 | - |
16.6382 | 39000 | 0.0002 | - |
16.6596 | 39050 | 0.0001 | - |
16.6809 | 39100 | 0.0001 | - |
16.7022 | 39150 | 0.0003 | - |
16.7235 | 39200 | 0.0001 | - |
16.7449 | 39250 | 0.0001 | - |
16.7662 | 39300 | 0.0003 | - |
16.7875 | 39350 | 0.0002 | - |
16.8089 | 39400 | 0.0003 | - |
16.8302 | 39450 | 0.0003 | - |
16.8515 | 39500 | 0.0001 | - |
16.8729 | 39550 | 0.0004 | - |
16.8942 | 39600 | 0.0002 | - |
16.9155 | 39650 | 0.0001 | - |
16.9369 | 39700 | 0.0002 | - |
16.9582 | 39750 | 0.0003 | - |
16.9795 | 39800 | 0.0004 | - |
17.0009 | 39850 | 0.0001 | - |
17.0222 | 39900 | 0.0005 | - |
17.0435 | 39950 | 0.0002 | - |
17.0648 | 40000 | 0.0001 | - |
17.0862 | 40050 | 0.0002 | - |
17.1075 | 40100 | 0.0003 | - |
17.1288 | 40150 | 0.0003 | - |
17.1502 | 40200 | 0.0002 | - |
17.1715 | 40250 | 0.0001 | - |
17.1928 | 40300 | 0.0001 | - |
17.2142 | 40350 | 0.0001 | - |
17.2355 | 40400 | 0.0001 | - |
17.2568 | 40450 | 0.0002 | - |
17.2782 | 40500 | 0.0006 | - |
17.2995 | 40550 | 0.0002 | - |
17.3208 | 40600 | 0.0003 | - |
17.3422 | 40650 | 0.0002 | - |
17.3635 | 40700 | 0.0002 | - |
17.3848 | 40750 | 0.0001 | - |
17.4061 | 40800 | 0.0001 | - |
17.4275 | 40850 | 0.0003 | - |
17.4488 | 40900 | 0.0002 | - |
17.4701 | 40950 | 0.0002 | - |
17.4915 | 41000 | 0.0002 | - |
17.5128 | 41050 | 0.0003 | - |
17.5341 | 41100 | 0.0001 | - |
17.5555 | 41150 | 0.0002 | - |
17.5768 | 41200 | 0.0001 | - |
17.5981 | 41250 | 0.0003 | - |
17.6195 | 41300 | 0.0002 | - |
17.6408 | 41350 | 0.0001 | - |
17.6621 | 41400 | 0.0002 | - |
17.6834 | 41450 | 0.0001 | - |
17.7048 | 41500 | 0.0001 | - |
17.7261 | 41550 | 0.0001 | - |
17.7474 | 41600 | 0.0001 | - |
17.7688 | 41650 | 0.0002 | - |
17.7901 | 41700 | 0.0001 | - |
17.8114 | 41750 | 0.0003 | - |
17.8328 | 41800 | 0.0002 | - |
17.8541 | 41850 | 0.0001 | - |
17.8754 | 41900 | 0.0002 | - |
17.8968 | 41950 | 0.0003 | - |
17.9181 | 42000 | 0.0002 | - |
17.9394 | 42050 | 0.0002 | - |
17.9608 | 42100 | 0.0001 | - |
17.9821 | 42150 | 0.0001 | - |
18.0034 | 42200 | 0.0001 | - |
18.0247 | 42250 | 0.0003 | - |
18.0461 | 42300 | 0.0002 | - |
18.0674 | 42350 | 0.0001 | - |
18.0887 | 42400 | 0.0001 | - |
18.1101 | 42450 | 0.0002 | - |
18.1314 | 42500 | 0.0001 | - |
18.1527 | 42550 | 0.0002 | - |
18.1741 | 42600 | 0.0001 | - |
18.1954 | 42650 | 0.0001 | - |
18.2167 | 42700 | 0.0001 | - |
18.2381 | 42750 | 0.0001 | - |
18.2594 | 42800 | 0.0001 | - |
18.2807 | 42850 | 0.0001 | - |
18.3020 | 42900 | 0.0001 | - |
18.3234 | 42950 | 0.0001 | - |
18.3447 | 43000 | 0.0002 | - |
18.3660 | 43050 | 0.0001 | - |
18.3874 | 43100 | 0.0001 | - |
18.4087 | 43150 | 0.0002 | - |
18.4300 | 43200 | 0.0001 | - |
18.4514 | 43250 | 0.0001 | - |
18.4727 | 43300 | 0.0001 | - |
18.4940 | 43350 | 0.0001 | - |
18.5154 | 43400 | 0.0001 | - |
18.5367 | 43450 | 0.0003 | - |
18.5580 | 43500 | 0.0001 | - |
18.5794 | 43550 | 0.0001 | - |
18.6007 | 43600 | 0.0003 | - |
18.6220 | 43650 | 0.0001 | - |
18.6433 | 43700 | 0.0001 | - |
18.6647 | 43750 | 0.0001 | - |
18.6860 | 43800 | 0.0001 | - |
18.7073 | 43850 | 0.0001 | - |
18.7287 | 43900 | 0.0001 | - |
18.75 | 43950 | 0.0002 | - |
18.7713 | 44000 | 0.0002 | - |
18.7927 | 44050 | 0.0001 | - |
18.8140 | 44100 | 0.0001 | - |
18.8353 | 44150 | 0.0001 | - |
18.8567 | 44200 | 0.0001 | - |
18.8780 | 44250 | 0.0001 | - |
18.8993 | 44300 | 0.0001 | - |
18.9206 | 44350 | 0.0001 | - |
18.9420 | 44400 | 0.0001 | - |
18.9633 | 44450 | 0.0001 | - |
18.9846 | 44500 | 0.0001 | - |
19.0060 | 44550 | 0.0001 | - |
19.0273 | 44600 | 0.0001 | - |
19.0486 | 44650 | 0.0001 | - |
19.0700 | 44700 | 0.0001 | - |
19.0913 | 44750 | 0.0001 | - |
19.1126 | 44800 | 0.0001 | - |
19.1340 | 44850 | 0.0001 | - |
19.1553 | 44900 | 0.0001 | - |
19.1766 | 44950 | 0.0001 | - |
19.1980 | 45000 | 0.0001 | - |
19.2193 | 45050 | 0.0001 | - |
19.2406 | 45100 | 0.0001 | - |
19.2619 | 45150 | 0.0001 | - |
19.2833 | 45200 | 0.0001 | - |
19.3046 | 45250 | 0.0001 | - |
19.3259 | 45300 | 0.0001 | - |
19.3473 | 45350 | 0.0001 | - |
19.3686 | 45400 | 0.0001 | - |
19.3899 | 45450 | 0.0001 | - |
19.4113 | 45500 | 0.0001 | - |
19.4326 | 45550 | 0.0001 | - |
19.4539 | 45600 | 0.0001 | - |
19.4753 | 45650 | 0.0001 | - |
19.4966 | 45700 | 0.0001 | - |
19.5179 | 45750 | 0.0001 | - |
19.5392 | 45800 | 0.0001 | - |
19.5606 | 45850 | 0.0001 | - |
19.5819 | 45900 | 0.0001 | - |
19.6032 | 45950 | 0.0001 | - |
19.6246 | 46000 | 0.0001 | - |
19.6459 | 46050 | 0.0001 | - |
19.6672 | 46100 | 0.0001 | - |
19.6886 | 46150 | 0.0001 | - |
19.7099 | 46200 | 0.0 | - |
19.7312 | 46250 | 0.0001 | - |
19.7526 | 46300 | 0.0001 | - |
19.7739 | 46350 | 0.0001 | - |
19.7952 | 46400 | 0.0 | - |
19.8166 | 46450 | 0.0001 | - |
19.8379 | 46500 | 0.0001 | - |
19.8592 | 46550 | 0.0001 | - |
19.8805 | 46600 | 0.0001 | - |
19.9019 | 46650 | 0.0001 | - |
19.9232 | 46700 | 0.0001 | - |
19.9445 | 46750 | 0.0001 | - |
19.9659 | 46800 | 0.0001 | - |
19.9872 | 46850 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}