minoosh's picture
Model save
0fe9a3d verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: bert-clf-crossencoder-cross_entropy
    results: []

bert-clf-crossencoder-cross_entropy

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0410
  • Accuracy: 0.6019
  • Precision: 0.6044
  • Recall: 0.6019
  • F1: 0.6029

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.2489 1.0 78 1.2061 0.4790 0.3740 0.4790 0.3999
1.0356 2.0 156 1.0236 0.6019 0.6244 0.6019 0.5841
0.8625 3.0 234 0.9983 0.6181 0.6274 0.6181 0.6126
0.7101 4.0 312 0.9687 0.6019 0.6004 0.6019 0.5998
0.5945 5.0 390 0.9962 0.6181 0.6178 0.6181 0.6157
0.4753 6.0 468 1.0245 0.6246 0.6337 0.6246 0.6256
0.3903 7.0 546 1.0410 0.6019 0.6044 0.6019 0.6029

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0