|
--- |
|
|
|
language: |
|
- en |
|
license: apache-2.0 |
|
inference: false |
|
tags: |
|
- text-classification |
|
- onnx |
|
- int8 |
|
- optimum |
|
- ONNXRuntime |
|
--- |
|
# LLM agent flow text classification |
|
|
|
This model identifies common LLM agent events and patterns within the conversation flow. |
|
Such events include an apology, where the LLM acknowledges a mistake. |
|
The flow labels can serve as foundational elements for sophisticated LLM analytics. |
|
|
|
It is ONNX quantized and is a fined-tune of [MiniLMv2-L6-H384](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large). |
|
The base model can be found [here](https://huggingface.co/minuva/MiniLMv2-agentflow-v2) |
|
|
|
This model is *only* for the LLM agent texts in the dialog. For the user texts [use this model](https://huggingface.co/minuva/MiniLMv2-userflow-v2-onnx/). |
|
|
|
|
|
# Optimum |
|
|
|
## Installation |
|
|
|
Install from source: |
|
```bash |
|
python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git |
|
``` |
|
|
|
|
|
## Run the Model |
|
```py |
|
from optimum.onnxruntime import ORTModelForSequenceClassification |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-agentflow-v2-onnx', provider="CPUExecutionProvider") |
|
tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-agentflow-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length') |
|
|
|
pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, ) |
|
texts = ["My apologies", "Im not sure what you mean"] |
|
pipe(texts) |
|
# [{'label': 'agent_apology_error_mistake', 'score': 0.9967106580734253}, |
|
# {'label': 'agent_didnt_understand', 'score': 0.9975798726081848}] |
|
``` |
|
|
|
# ONNX Runtime only |
|
|
|
A lighter solution for deployment |
|
|
|
|
|
## Installation |
|
```bash |
|
pip install tokenizers |
|
pip install onnxruntime |
|
git clone https://huggingface.co/minuva/MiniLMv2-agentflow-v2-onnx |
|
``` |
|
|
|
## Run the Model |
|
|
|
```py |
|
import os |
|
import numpy as np |
|
import json |
|
|
|
from tokenizers import Tokenizer |
|
from onnxruntime import InferenceSession |
|
|
|
|
|
model_name = "minuva/MiniLMv2-agentflow-v2-onnx" |
|
|
|
tokenizer = Tokenizer.from_pretrained(model_name) |
|
tokenizer.enable_padding( |
|
pad_token="<pad>", |
|
pad_id=1, |
|
) |
|
tokenizer.enable_truncation(max_length=256) |
|
batch_size = 16 |
|
|
|
texts = ["thats my mistake"] |
|
outputs = [] |
|
model = InferenceSession("MiniLMv2-agentflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider']) |
|
|
|
with open(os.path.join("MiniLMv2-agentflow-v2-onnx", "config.json"), "r") as f: |
|
config = json.load(f) |
|
|
|
output_names = [output.name for output in model.get_outputs()] |
|
input_names = [input.name for input in model.get_inputs()] |
|
|
|
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1): |
|
encodings = tokenizer.encode_batch(list(subtexts)) |
|
inputs = { |
|
"input_ids": np.vstack( |
|
[encoding.ids for encoding in encodings], |
|
), |
|
"attention_mask": np.vstack( |
|
[encoding.attention_mask for encoding in encodings], |
|
), |
|
"token_type_ids": np.vstack( |
|
[encoding.type_ids for encoding in encodings], |
|
), |
|
} |
|
|
|
for input_name in input_names: |
|
if input_name not in inputs: |
|
raise ValueError(f"Input name {input_name} not found in inputs") |
|
|
|
inputs = {input_name: inputs[input_name] for input_name in input_names} |
|
output = np.squeeze( |
|
np.stack( |
|
model.run(output_names=output_names, input_feed=inputs) |
|
), |
|
axis=0, |
|
) |
|
outputs.append(output) |
|
|
|
outputs = np.concatenate(outputs, axis=0) |
|
scores = 1 / (1 + np.exp(-outputs)) |
|
results = [] |
|
for item in scores: |
|
labels = [] |
|
scores = [] |
|
for idx, s in enumerate(item): |
|
labels.append(config["id2label"][str(idx)]) |
|
scores.append(float(s)) |
|
results.append({"labels": labels, "scores": scores}) |
|
|
|
|
|
res = [] |
|
|
|
for result in results: |
|
joined = list(zip(result['labels'], result['scores'])) |
|
max_score = max(joined, key=lambda x: x[1]) |
|
res.append(max_score) |
|
|
|
res |
|
# [('agent_apology_error_mistake', 0.9991968274116516), |
|
# ('agent_didnt_understand', 0.9993669390678406)] |
|
``` |
|
|
|
# Categories Explanation |
|
|
|
<details> |
|
<summary>Click to expand!</summary> |
|
|
|
- OTHER: Responses or actions by the agent that do not fit into the predefined categories or are outside the scope of the specific interactions listed. |
|
|
|
- agent_apology_error_mistake: When the agent acknowledges an error or mistake in the information provided or in the handling of the request. |
|
|
|
- agent_apology_unsatisfactory: The agent expresses an apology for providing an unsatisfactory response or for any dissatisfaction experienced by the user. |
|
|
|
- agent_didnt_understand: Indicates that the agent did not understand the user's request or question. |
|
|
|
- agent_limited_capabilities: The agent communicates its limitations in addressing certain requests or providing certain types of information. |
|
|
|
- agent_refuses_answer: When the agent explicitly refuses to answer a question or fulfill a request, due to policy restrictions or ethical considerations. |
|
|
|
- image_limitations": The agent points out limitations related to handling or interpreting images. |
|
|
|
- no_information_doesnt_know": The agent indicates that it has no information available or does not know the answer to the user's question. |
|
|
|
- success_and_followup_assistance": The agent successfully provides the requested information or service and offers further assistance or follow-up actions if needed. |
|
</details> |
|
|
|
<br> |
|
|
|
|
|
# Metrics in our private test dataset |
|
| Model (params) | Loss | Accuracy | F1 | |
|
|--------------------|-------------|----------|--------| |
|
| minuva/MiniLMv2-agentflow-v2 (33M) | 0.1462 | 0.9616 | 0.9618 | |
|
| minuva/MiniLMv2-agentflow-v2-onnx (33M) | - | 0.9624 | 0.9626 | |
|
|
|
# Deployment |
|
|
|
Check our [llm-flow-classification repository](https://github.com/minuva/llm-flow-classification) for a FastAPI and ONNX based server to deploy this model on CPU devices. |