albert-base-v2-finetuned-ner-cadec

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3782
  • Precision: 0.6044
  • Recall: 0.6542
  • F1: 0.6283
  • Accuracy: 0.9197
  • Adr Precision: 0.5756
  • Adr Recall: 0.6495
  • Adr F1: 0.6103
  • Disease Precision: 0.1923
  • Disease Recall: 0.2632
  • Disease F1: 0.2222
  • Drug Precision: 0.9259
  • Drug Recall: 0.9091
  • Drug F1: 0.9174
  • Finding Precision: 0.1667
  • Finding Recall: 0.2
  • Finding F1: 0.1818
  • Symptom Precision: 0.6
  • Symptom Recall: 0.2222
  • Symptom F1: 0.3243
  • B-adr Precision: 0.7331
  • B-adr Recall: 0.7908
  • B-adr F1: 0.7608
  • B-disease Precision: 0.2778
  • B-disease Recall: 0.2632
  • B-disease F1: 0.2703
  • B-drug Precision: 0.9630
  • B-drug Recall: 0.9455
  • B-drug F1: 0.9541
  • B-finding Precision: 0.2391
  • B-finding Recall: 0.2444
  • B-finding F1: 0.2418
  • B-symptom Precision: 0.75
  • B-symptom Recall: 0.24
  • B-symptom F1: 0.3636
  • I-adr Precision: 0.5746
  • I-adr Recall: 0.6524
  • I-adr F1: 0.6110
  • I-disease Precision: 0.2222
  • I-disease Recall: 0.3077
  • I-disease F1: 0.2581
  • I-drug Precision: 0.9259
  • I-drug Recall: 0.9202
  • I-drug F1: 0.9231
  • I-finding Precision: 0.1842
  • I-finding Recall: 0.2188
  • I-finding F1: 0.2000
  • I-symptom Precision: 0.25
  • I-symptom Recall: 0.0476
  • I-symptom F1: 0.08
  • Macro Avg F1: 0.4663
  • Weighted Avg F1: 0.6990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Adr Precision Adr Recall Adr F1 Disease Precision Disease Recall Disease F1 Drug Precision Drug Recall Drug F1 Finding Precision Finding Recall Finding F1 Symptom Precision Symptom Recall Symptom F1 B-adr Precision B-adr Recall B-adr F1 B-disease Precision B-disease Recall B-disease F1 B-drug Precision B-drug Recall B-drug F1 B-finding Precision B-finding Recall B-finding F1 B-symptom Precision B-symptom Recall B-symptom F1 I-adr Precision I-adr Recall I-adr F1 I-disease Precision I-disease Recall I-disease F1 I-drug Precision I-drug Recall I-drug F1 I-finding Precision I-finding Recall I-finding F1 I-symptom Precision I-symptom Recall I-symptom F1 Macro Avg F1 Weighted Avg F1
No log 1.0 127 0.2569 0.5268 0.6142 0.5671 0.9148 0.4666 0.6275 0.5352 0.0 0.0 0.0 0.8471 0.8727 0.8597 0.1935 0.1333 0.1579 0.0 0.0 0.0 0.6758 0.7601 0.7154 0.0 0.0 0.0 0.9157 0.9212 0.9184 0.3 0.0667 0.1091 0.0 0.0 0.0 0.4694 0.6411 0.5420 0.0 0.0 0.0 0.8683 0.8896 0.8788 0.2 0.1875 0.1935 0.0 0.0 0.0 0.3357 0.6349
No log 2.0 254 0.2418 0.5393 0.5993 0.5677 0.9159 0.5219 0.6110 0.5630 0.0645 0.1053 0.0800 0.8438 0.8182 0.8308 0.1379 0.1778 0.1553 0.6667 0.0741 0.1333 0.7396 0.7524 0.7460 0.1 0.1053 0.1026 0.9618 0.9152 0.9379 0.2093 0.2 0.2045 0.6667 0.08 0.1429 0.5226 0.6275 0.5703 0.0526 0.0769 0.0625 0.8491 0.8282 0.8385 0.25 0.3125 0.2778 0.0 0.0 0.0 0.3883 0.6615
No log 3.0 381 0.2577 0.6019 0.6380 0.6194 0.9226 0.5747 0.6422 0.6066 0.0909 0.1579 0.1154 0.9036 0.9091 0.9063 0.1579 0.1333 0.1446 0.6667 0.0741 0.1333 0.7598 0.7774 0.7685 0.2593 0.3684 0.3043 0.9455 0.9455 0.9455 0.2308 0.1333 0.1690 0.6667 0.08 0.1429 0.5881 0.6479 0.6165 0.0769 0.0769 0.0769 0.9091 0.9202 0.9146 0.2581 0.25 0.2540 0.0 0.0 0.0 0.4192 0.6943
0.2396 4.0 508 0.2655 0.6073 0.6429 0.6246 0.9200 0.5840 0.6440 0.6126 0.0 0.0 0.0 0.9012 0.8848 0.8930 0.2222 0.3111 0.2593 0.6667 0.1481 0.2424 0.7678 0.7678 0.7678 0.0 0.0 0.0 0.9689 0.9455 0.9571 0.2745 0.3111 0.2917 1.0 0.24 0.3871 0.5732 0.6185 0.5950 0.1 0.0769 0.0870 0.9068 0.8957 0.9012 0.2766 0.4062 0.3291 0.0 0.0 0.0 0.4316 0.6931
0.2396 5.0 635 0.2875 0.5769 0.6367 0.6053 0.9175 0.5669 0.6532 0.6070 0.1053 0.2105 0.1404 0.8598 0.8545 0.8571 0.1087 0.1111 0.1099 0.5 0.1481 0.2286 0.7319 0.7965 0.7629 0.2188 0.3684 0.2745 0.9627 0.9394 0.9509 0.1852 0.1111 0.1389 0.5714 0.16 0.25 0.5686 0.6546 0.6086 0.1053 0.1538 0.125 0.8650 0.8650 0.8650 0.2105 0.25 0.2286 0.0 0.0 0.0 0.4204 0.6853
0.2396 6.0 762 0.3081 0.6063 0.6442 0.6247 0.9188 0.5809 0.6459 0.6116 0.1923 0.2632 0.2222 0.8841 0.8788 0.8815 0.2 0.2222 0.2105 0.8 0.1481 0.25 0.7409 0.7793 0.7596 0.2381 0.2632 0.25 0.9571 0.9455 0.9512 0.2381 0.2222 0.2299 0.8 0.16 0.2667 0.5773 0.6659 0.6184 0.25 0.3077 0.2759 0.8896 0.8896 0.8896 0.2571 0.2812 0.2687 0.0 0.0 0.0 0.4510 0.6950
0.2396 7.0 889 0.3203 0.6147 0.6692 0.6408 0.9196 0.5903 0.6716 0.6283 0.15 0.1579 0.1538 0.8976 0.9030 0.9003 0.2182 0.2667 0.2400 0.5455 0.2222 0.3158 0.7442 0.7985 0.7704 0.2857 0.2105 0.2424 0.9398 0.9455 0.9426 0.2667 0.2667 0.2667 0.7778 0.28 0.4118 0.5783 0.6501 0.6121 0.1765 0.2308 0.2000 0.9085 0.9141 0.9113 0.2222 0.25 0.2353 0.6 0.1429 0.2308 0.4823 0.7039
0.0784 8.0 1016 0.3548 0.5995 0.6429 0.6205 0.9183 0.5783 0.6367 0.6061 0.15 0.1579 0.1538 0.8916 0.8970 0.8943 0.1875 0.2667 0.2202 0.5556 0.1852 0.2778 0.7454 0.7754 0.7601 0.2857 0.2105 0.2424 0.9455 0.9455 0.9455 0.2545 0.3111 0.2800 0.625 0.2 0.3030 0.5683 0.6388 0.6015 0.2 0.2308 0.2143 0.8970 0.9080 0.9024 0.1957 0.2812 0.2308 0.3333 0.0476 0.0833 0.4563 0.6927
0.0784 9.0 1143 0.3721 0.6101 0.6604 0.6343 0.9209 0.5812 0.6569 0.6167 0.25 0.2632 0.2564 0.9202 0.9091 0.9146 0.1964 0.2444 0.2178 0.4167 0.1852 0.2564 0.7300 0.7889 0.7583 0.3125 0.2632 0.2857 0.9630 0.9455 0.9541 0.2340 0.2444 0.2391 0.625 0.2 0.3030 0.5828 0.6591 0.6186 0.2857 0.3077 0.2963 0.9259 0.9202 0.9231 0.2432 0.2812 0.2609 0.3333 0.0952 0.1481 0.4787 0.7022
0.0784 10.0 1270 0.3782 0.6044 0.6542 0.6283 0.9197 0.5756 0.6495 0.6103 0.1923 0.2632 0.2222 0.9259 0.9091 0.9174 0.1667 0.2 0.1818 0.6 0.2222 0.3243 0.7331 0.7908 0.7608 0.2778 0.2632 0.2703 0.9630 0.9455 0.9541 0.2391 0.2444 0.2418 0.75 0.24 0.3636 0.5746 0.6524 0.6110 0.2222 0.3077 0.2581 0.9259 0.9202 0.9231 0.1842 0.2188 0.2000 0.25 0.0476 0.08 0.4663 0.6990

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
20
Safetensors
Model size
11.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mireiaplalis/albert-base-v2-finetuned-ner-cadec

Finetuned
(170)
this model