uner-distilbert-ner / README.md
mirfan899's picture
End of training
e219a88
---
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: uner-distilbert-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# uner-distilbert-ner
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1575
- Precision: 0.7908
- Recall: 0.8167
- F1: 0.8035
- Accuracy: 0.9533
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 144 | 0.2222 | 0.6615 | 0.6686 | 0.6650 | 0.9266 |
| No log | 2.0 | 288 | 0.1752 | 0.7359 | 0.7684 | 0.7518 | 0.9442 |
| No log | 3.0 | 432 | 0.1541 | 0.7709 | 0.7987 | 0.7846 | 0.9507 |
| 0.2098 | 4.0 | 576 | 0.1601 | 0.7755 | 0.8224 | 0.7983 | 0.9537 |
| 0.2098 | 5.0 | 720 | 0.1575 | 0.7908 | 0.8167 | 0.8035 | 0.9533 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.14.5
- Tokenizers 0.13.3