|
--- |
|
library_name: transformers |
|
base_model: csebuetnlp/banglabert |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: results |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# results |
|
|
|
This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7260 |
|
- Accuracy: 0.7417 |
|
- F1: 0.7267 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.9409 | 1.0 | 35 | 0.9145 | 0.6583 | 0.6004 | |
|
| 0.7658 | 2.0 | 70 | 0.7490 | 0.725 | 0.6680 | |
|
| 0.6112 | 3.0 | 105 | 0.6922 | 0.7333 | 0.6772 | |
|
| 0.4237 | 4.0 | 140 | 0.6434 | 0.7583 | 0.7283 | |
|
| 0.327 | 5.0 | 175 | 0.6385 | 0.7667 | 0.7513 | |
|
| 0.2258 | 6.0 | 210 | 0.6861 | 0.7333 | 0.7266 | |
|
| 0.1018 | 7.0 | 245 | 0.7522 | 0.7583 | 0.7327 | |
|
| 0.0794 | 8.0 | 280 | 0.8856 | 0.7667 | 0.7506 | |
|
| 0.0543 | 9.0 | 315 | 0.9427 | 0.7417 | 0.7368 | |
|
| 0.03 | 10.0 | 350 | 0.9346 | 0.75 | 0.7339 | |
|
| 0.0252 | 11.0 | 385 | 1.0011 | 0.7333 | 0.7274 | |
|
| 0.0324 | 12.0 | 420 | 1.0499 | 0.75 | 0.7366 | |
|
| 0.0139 | 13.0 | 455 | 1.0554 | 0.7333 | 0.7173 | |
|
| 0.014 | 14.0 | 490 | 1.0881 | 0.7583 | 0.7492 | |
|
| 0.0131 | 15.0 | 525 | 1.0949 | 0.7583 | 0.7492 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|