Visualize in Weights & Biases

lilt-roBERTa-en-base-sroie

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0348
  • Address: {'precision': 0.92, 'recall': 0.9279538904899135, 'f1': 0.9239598278335724, 'number': 347}
  • Company: {'precision': 0.9405099150141643, 'recall': 0.9567723342939481, 'f1': 0.9485714285714285, 'number': 347}
  • Date: {'precision': 0.9827586206896551, 'recall': 0.9855907780979827, 'f1': 0.9841726618705036, 'number': 347}
  • Total: {'precision': 0.9131652661064426, 'recall': 0.9394812680115274, 'f1': 0.9261363636363636, 'number': 347}
  • Overall Precision: 0.9389
  • Overall Recall: 0.9524
  • Overall F1: 0.9456
  • Overall Accuracy: 0.9954

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Address Company Date Total Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0536 6.3291 500 0.0261 {'precision': 0.9067796610169492, 'recall': 0.9250720461095101, 'f1': 0.9158345221112697, 'number': 347} {'precision': 0.9273743016759777, 'recall': 0.9567723342939481, 'f1': 0.9418439716312057, 'number': 347} {'precision': 0.9828080229226361, 'recall': 0.9884726224783862, 'f1': 0.985632183908046, 'number': 347} {'precision': 0.883008356545961, 'recall': 0.9135446685878963, 'f1': 0.8980169971671388, 'number': 347} 0.9246 0.9460 0.9352 0.9949
0.0058 12.6582 1000 0.0326 {'precision': 0.9176136363636364, 'recall': 0.930835734870317, 'f1': 0.9241773962804005, 'number': 347} {'precision': 0.9323943661971831, 'recall': 0.9538904899135446, 'f1': 0.9430199430199431, 'number': 347} {'precision': 0.9827586206896551, 'recall': 0.9855907780979827, 'f1': 0.9841726618705036, 'number': 347} {'precision': 0.8910081743869209, 'recall': 0.9423631123919308, 'f1': 0.9159663865546217, 'number': 347} 0.9304 0.9532 0.9416 0.9950
0.0019 18.9873 1500 0.0348 {'precision': 0.92, 'recall': 0.9279538904899135, 'f1': 0.9239598278335724, 'number': 347} {'precision': 0.9405099150141643, 'recall': 0.9567723342939481, 'f1': 0.9485714285714285, 'number': 347} {'precision': 0.9827586206896551, 'recall': 0.9855907780979827, 'f1': 0.9841726618705036, 'number': 347} {'precision': 0.9131652661064426, 'recall': 0.9394812680115274, 'f1': 0.9261363636363636, 'number': 347} 0.9389 0.9524 0.9456 0.9954

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
130M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for missdua-07/lilt-roberta-en-base-sroie

Finetuned
(47)
this model