mitek's picture
Upload 1159 files
7eb3676 verified
import torch
import warnings
from enum import IntEnum
from skimage import io
import numpy as np
from packaging import version
from tqdm import tqdm
import importlib
from .utils import *
from .folder_data import FolderData
class LandmarksType(IntEnum):
"""Enum class defining the type of landmarks to detect.
``TWO_D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
``TWO_HALF_D`` - this points represent the projection of the 3D points into 3D
``THREE_D`` - detect the points ``(x,y,z)``` in a 3D space
"""
TWO_D = 1
TWO_HALF_D = 2
THREE_D = 3
class NetworkSize(IntEnum):
# TINY = 1
# SMALL = 2
# MEDIUM = 3
LARGE = 4
default_model_urls = {
'2DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/2DFAN4-cd938726ad.zip',
'3DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/3DFAN4-4a694010b9.zip',
'depth': 'https://www.adrianbulat.com/downloads/python-fan/depth-6c4283c0e0.zip',
}
models_urls = {
'1.6': {
'2DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/2DFAN4_1.6-c827573f02.zip',
'3DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/3DFAN4_1.6-ec5cf40a1d.zip',
'depth': 'https://www.adrianbulat.com/downloads/python-fan/depth_1.6-2aa3f18772.zip',
},
'1.5': {
'2DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/2DFAN4_1.5-a60332318a.zip',
'3DFAN-4': 'https://www.adrianbulat.com/downloads/python-fan/3DFAN4_1.5-176570af4d.zip',
'depth': 'https://www.adrianbulat.com/downloads/python-fan/depth_1.5-bc10f98e39.zip',
},
}
class FaceAlignment:
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
device='cuda', dtype=torch.float32, flip_input=False, face_detector='sfd', face_detector_kwargs=None, verbose=False):
self.device = device
self.flip_input = flip_input
self.landmarks_type = landmarks_type
self.verbose = verbose
self.dtype = dtype
if version.parse(torch.__version__) < version.parse('1.5.0'):
raise ImportError(f'Unsupported pytorch version detected. Minimum supported version of pytorch: 1.5.0\
Either upgrade (recommended) your pytorch setup, or downgrade to face-alignment 1.2.0')
network_size = int(network_size)
pytorch_version = torch.__version__
if 'dev' in pytorch_version:
pytorch_version = pytorch_version.rsplit('.', 2)[0]
else:
pytorch_version = pytorch_version.rsplit('.', 1)[0]
#if 'cuda' in device:
# torch.backends.cudnn.benchmark = True
# Get the face detector
package_directory_name = os.path.basename(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
face_detector_module = importlib.import_module('.face_alignment.detection.' + face_detector, package=package_directory_name)
face_detector_kwargs = face_detector_kwargs or {}
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose, **face_detector_kwargs)
# Initialise the face alignemnt networks
if landmarks_type == LandmarksType.TWO_D:
network_name = '2DFAN-' + str(network_size)
else:
network_name = '3DFAN-' + str(network_size)
self.face_alignment_net = torch.jit.load(
load_file_from_url(models_urls.get(pytorch_version, default_model_urls)[network_name]))
self.face_alignment_net.to(device, dtype=dtype)
self.face_alignment_net.eval()
# Initialiase the depth prediciton network
if landmarks_type == LandmarksType.THREE_D:
self.depth_prediciton_net = torch.jit.load(
load_file_from_url(models_urls.get(pytorch_version, default_model_urls)['depth']))
self.depth_prediciton_net.to(device, dtype=dtype)
self.depth_prediciton_net.eval()
def get_landmarks(self, image_or_path, detected_faces=None, return_bboxes=False, return_landmark_score=False):
"""Deprecated, please use get_landmarks_from_image
Arguments:
image_or_path {string or numpy.array or torch.tensor} -- The input image or path to it
Keyword Arguments:
detected_faces {list of numpy.array} -- list of bounding boxes, one for each face found
in the image (default: {None})
return_bboxes {boolean} -- If True, return the face bounding boxes in addition to the keypoints.
return_landmark_score {boolean} -- If True, return the keypoint scores along with the keypoints.
"""
return self.get_landmarks_from_image(image_or_path, detected_faces, return_bboxes, return_landmark_score)
@torch.no_grad()
def get_landmarks_from_image(self, image_or_path, detected_faces=None, return_bboxes=False,
return_landmark_score=False):
"""Predict the landmarks for each face present in the image.
This function predicts a set of 68 2D or 3D images, one for each image present.
If detect_faces is None the method will also run a face detector.
Arguments:
image_or_path {string or numpy.array or torch.tensor} -- The input image or path to it.
Keyword Arguments:
detected_faces {list of numpy.array} -- list of bounding boxes, one for each face found
in the image (default: {None})
return_bboxes {boolean} -- If True, return the face bounding boxes in addition to the keypoints.
return_landmark_score {boolean} -- If True, return the keypoint scores along with the keypoints.
Return:
result:
1. if both return_bboxes and return_landmark_score are False, result will be:
landmark
2. Otherwise, result will be one of the following, depending on the actual value of return_* arguments.
(landmark, landmark_score, detected_face)
(landmark, None, detected_face)
(landmark, landmark_score, None )
"""
image = get_image(image_or_path)
if detected_faces is None:
detected_faces = self.face_detector.detect_from_image(image.copy())
if len(detected_faces) == 0:
warnings.warn("No faces were detected.")
if return_bboxes or return_landmark_score:
return None, None, None
else:
return None
landmarks = []
landmarks_scores = []
for i, d in enumerate(detected_faces):
center = torch.tensor(
[d[2] - (d[2] - d[0]) / 2.0, d[3] - (d[3] - d[1]) / 2.0])
center[1] = center[1] - (d[3] - d[1]) * 0.12
scale = (d[2] - d[0] + d[3] - d[1]) / self.face_detector.reference_scale
inp = crop(image, center, scale)
inp = torch.from_numpy(inp.transpose(
(2, 0, 1))).float()
inp = inp.to(self.device, dtype=self.dtype)
inp.div_(255.0).unsqueeze_(0)
out = self.face_alignment_net(inp).detach()
if self.flip_input:
out += flip(self.face_alignment_net(flip(inp)).detach(), is_label=True)
out = out.to(device='cpu', dtype=torch.float32).numpy()
pts, pts_img, scores = get_preds_fromhm(out, center.numpy(), scale)
pts, pts_img = torch.from_numpy(pts), torch.from_numpy(pts_img)
pts, pts_img = pts.view(68, 2) * 4, pts_img.view(68, 2)
scores = scores.squeeze(0)
if self.landmarks_type == LandmarksType.THREE_D:
heatmaps = np.zeros((68, 256, 256), dtype=np.float32)
for i in range(68):
if pts[i, 0] > 0 and pts[i, 1] > 0:
heatmaps[i] = draw_gaussian(
heatmaps[i], pts[i], 2)
heatmaps = torch.from_numpy(
heatmaps).unsqueeze_(0)
heatmaps = heatmaps.to(self.device, dtype=self.dtype)
depth_pred = self.depth_prediciton_net(
torch.cat((inp, heatmaps), 1)).data.cpu().view(68, 1).to(dtype=torch.float32)
pts_img = torch.cat(
(pts_img, depth_pred * (1.0 / (256.0 / (200.0 * scale)))), 1)
landmarks.append(pts_img.numpy())
landmarks_scores.append(scores)
if not return_bboxes:
detected_faces = None
if not return_landmark_score:
landmarks_scores = None
if return_bboxes or return_landmark_score:
return landmarks, landmarks_scores, detected_faces
else:
return landmarks
@torch.no_grad()
def get_landmarks_from_batch(self, image_batch, detected_faces=None, return_bboxes=False,
return_landmark_score=False):
"""Predict the landmarks for each face present in the image.
This function predicts a set of 68 2D or 3D images, one for each image in a batch in parallel.
If detect_faces is None the method will also run a face detector.
Arguments:
image_batch {torch.tensor} -- The input images batch
Keyword Arguments:
detected_faces {list of numpy.array} -- list of bounding boxes, one for each face found
in the image (default: {None})
return_bboxes {boolean} -- If True, return the face bounding boxes in addition to the keypoints.
return_landmark_score {boolean} -- If True, return the keypoint scores along with the keypoints.
Return:
result:
1. if both return_bboxes and return_landmark_score are False, result will be:
landmarks
2. Otherwise, result will be one of the following, depending on the actual value of return_* arguments.
(landmark, landmark_score, detected_face)
(landmark, None, detected_face)
(landmark, landmark_score, None )
"""
if detected_faces is None:
detected_faces = self.face_detector.detect_from_batch(image_batch)
if len(detected_faces) == 0:
warnings.warn("No faces were detected.")
if return_bboxes or return_landmark_score:
return None, None, None
else:
return None
landmarks = []
landmarks_scores_list = []
# A batch for each frame
for i, faces in enumerate(detected_faces):
res = self.get_landmarks_from_image(
image_batch[i].cpu().numpy().transpose(1, 2, 0),
detected_faces=faces,
return_landmark_score=return_landmark_score,
)
if return_landmark_score:
landmark_set, landmarks_scores, _ = res
landmarks_scores_list.append(landmarks_scores)
else:
landmark_set = res
# Bacward compatibility
if landmark_set is not None:
landmark_set = np.concatenate(landmark_set, axis=0)
else:
landmark_set = []
landmarks.append(landmark_set)
if not return_bboxes:
detected_faces = None
if not return_landmark_score:
landmarks_scores_list = None
if return_bboxes or return_landmark_score:
return landmarks, landmarks_scores_list, detected_faces
else:
return landmarks
def get_landmarks_from_directory(self, path, extensions=['.jpg', '.png'], recursive=True, show_progress_bar=True,
return_bboxes=False, return_landmark_score=False):
"""Scan a directory for images with a given extension type(s) and predict the landmarks for each
face present in the images found.
Arguments:
path {str} -- path to the target directory containing the images
Keyword Arguments:
extensions {list of str} -- list containing the image extensions considered (default: ['.jpg', '.png'])
recursive {boolean} -- If True, scans for images recursively (default: True)
show_progress_bar {boolean} -- If True displays a progress bar (default: True)
return_bboxes {boolean} -- If True, return the face bounding boxes in addition to the keypoints.
return_landmark_score {boolean} -- If True, return the keypoint scores along with the keypoints.
"""
dataset = FolderData(path, self.face_detector.tensor_or_path_to_ndarray, extensions, recursive, self.verbose)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=2, prefetch_factor=4)
predictions = {}
for (image_path, image) in tqdm(dataloader, disable=not show_progress_bar):
image_path, image = image_path[0], image[0]
bounding_boxes = self.face_detector.detect_from_image(image)
if return_bboxes or return_landmark_score:
preds, bbox, score = self.get_landmarks_from_image(
image, bounding_boxes, return_bboxes=return_bboxes, return_landmark_score=return_landmark_score)
predictions[image_path] = (preds, bbox, score)
else:
preds = self.get_landmarks_from_image(image, bounding_boxes)
predictions[image_path] = preds
return predictions