mitek's picture
Upload 1159 files
7eb3676 verified
import os
import sys
import errno
import torch
import math
import numpy as np
import cv2
from skimage import io
from skimage import color
from numba import jit
from urllib.parse import urlparse
from torch.hub import download_url_to_file, HASH_REGEX
try:
from torch.hub import get_dir
except BaseException:
from torch.hub import _get_torch_home as get_dir
gauss_kernel = None
def _gaussian(
size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
mean_vert=0.5):
# handle some defaults
if width is None:
width = size
if height is None:
height = size
if sigma_horz is None:
sigma_horz = sigma
if sigma_vert is None:
sigma_vert = sigma
center_x = mean_horz * width + 0.5
center_y = mean_vert * height + 0.5
gauss = np.empty((height, width), dtype=np.float32)
# generate kernel
for i in range(height):
for j in range(width):
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
if normalize:
gauss = gauss / np.sum(gauss)
return gauss
def draw_gaussian(image, point, sigma):
global gauss_kernel
# Check if the gaussian is inside
ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1):
return image
size = 6 * sigma + 1
if gauss_kernel is None:
g = _gaussian(size)
gauss_kernel = g
else:
g = gauss_kernel
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
assert (g_x[0] > 0 and g_y[1] > 0)
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
image[image > 1] = 1
return image
def transform(point, center, scale, resolution, invert=False):
"""Generate and affine transformation matrix.
Given a set of points, a center, a scale and a targer resolution, the
function generates and affine transformation matrix. If invert is ``True``
it will produce the inverse transformation.
Arguments:
point {torch.tensor} -- the input 2D point
center {torch.tensor or numpy.array} -- the center around which to perform the transformations
scale {float} -- the scale of the face/object
resolution {float} -- the output resolution
Keyword Arguments:
invert {bool} -- define wherever the function should produce the direct or the
inverse transformation matrix (default: {False})
"""
_pt = torch.ones(3)
_pt[0] = point[0]
_pt[1] = point[1]
h = 200.0 * scale
t = torch.eye(3)
t[0, 0] = resolution / h
t[1, 1] = resolution / h
t[0, 2] = resolution * (-center[0] / h + 0.5)
t[1, 2] = resolution * (-center[1] / h + 0.5)
if invert:
t = torch.inverse(t)
new_point = (torch.matmul(t, _pt))[0:2]
return new_point.int()
def crop(image, center, scale, resolution=256.0):
"""Center crops an image or set of heatmaps
Arguments:
image {numpy.array} -- an rgb image
center {numpy.array} -- the center of the object, usually the same as of the bounding box
scale {float} -- scale of the face
Keyword Arguments:
resolution {float} -- the size of the output cropped image (default: {256.0})
Returns:
[type] -- [description]
""" # Crop around the center point
""" Crops the image around the center. Input is expected to be an np.ndarray """
ul = transform([1, 1], center, scale, resolution, True)
br = transform([resolution, resolution], center, scale, resolution, True)
# pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0)
if image.ndim > 2:
newDim = np.array([br[1] - ul[1], br[0] - ul[0],
image.shape[2]], dtype=np.int32)
newImg = np.zeros(newDim, dtype=np.uint8)
else:
newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
newImg = np.zeros(newDim, dtype=np.uint8)
ht = image.shape[0]
wd = image.shape[1]
newX = np.array(
[max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
newY = np.array(
[max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]
] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)),
interpolation=cv2.INTER_LINEAR)
return newImg
@jit(nopython=True)
def transform_np(point, center, scale, resolution, invert=False):
"""Generate and affine transformation matrix.
Given a set of points, a center, a scale and a targer resolution, the
function generates and affine transformation matrix. If invert is ``True``
it will produce the inverse transformation.
Arguments:
point {numpy.array} -- the input 2D point
center {numpy.array} -- the center around which to perform the transformations
scale {float} -- the scale of the face/object
resolution {float} -- the output resolution
Keyword Arguments:
invert {bool} -- define wherever the function should produce the direct or the
inverse transformation matrix (default: {False})
"""
_pt = np.ones(3)
_pt[0] = point[0]
_pt[1] = point[1]
h = 200.0 * scale
t = np.eye(3)
t[0, 0] = resolution / h
t[1, 1] = resolution / h
t[0, 2] = resolution * (-center[0] / h + 0.5)
t[1, 2] = resolution * (-center[1] / h + 0.5)
if invert:
t = np.ascontiguousarray(np.linalg.pinv(t))
new_point = np.dot(t, _pt)[0:2]
return new_point.astype(np.int32)
def get_preds_fromhm(hm, center=None, scale=None):
"""Obtain (x,y) coordinates given a set of N heatmaps. If the center
and the scale is provided the function will return the points also in
the original coordinate frame.
Arguments:
hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
Keyword Arguments:
center {torch.tensor} -- the center of the bounding box (default: {None})
scale {float} -- face scale (default: {None})
"""
B, C, H, W = hm.shape
hm_reshape = hm.reshape(B, C, H * W)
idx = np.argmax(hm_reshape, axis=-1)
scores = np.take_along_axis(hm_reshape, np.expand_dims(idx, axis=-1), axis=-1).squeeze(-1)
preds, preds_orig = _get_preds_fromhm(hm, idx, center, scale)
return preds, preds_orig, scores
@jit(nopython=True)
def _get_preds_fromhm(hm, idx, center=None, scale=None):
"""Obtain (x,y) coordinates given a set of N heatmaps and the
coresponding locations of the maximums. If the center
and the scale is provided the function will return the points also in
the original coordinate frame.
Arguments:
hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
Keyword Arguments:
center {torch.tensor} -- the center of the bounding box (default: {None})
scale {float} -- face scale (default: {None})
"""
B, C, H, W = hm.shape
idx += 1
preds = idx.repeat(2).reshape(B, C, 2).astype(np.float32)
preds[:, :, 0] = (preds[:, :, 0] - 1) % W + 1
preds[:, :, 1] = np.floor((preds[:, :, 1] - 1) / H) + 1
for i in range(B):
for j in range(C):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = np.array(
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j] += np.sign(diff) * 0.25
preds -= 0.5
preds_orig = np.zeros_like(preds)
if center is not None and scale is not None:
for i in range(B):
for j in range(C):
preds_orig[i, j] = transform_np(
preds[i, j], center, scale, H, True)
return preds, preds_orig
def create_target_heatmap(target_landmarks, centers, scales):
heatmaps = np.zeros((target_landmarks.shape[0], 68, 64, 64), dtype=np.float32)
for i in range(heatmaps.shape[0]):
for p in range(68):
landmark_cropped_coor = transform(target_landmarks[i, p] + 1, centers[i], scales[i], 64, invert=False)
heatmaps[i, p] = draw_gaussian(heatmaps[i, p], landmark_cropped_coor + 1, 2)
return torch.tensor(heatmaps)
def create_bounding_box(target_landmarks, expansion_factor=0.0):
"""
gets a batch of landmarks and calculates a bounding box that includes all the landmarks per set of landmarks in
the batch
:param target_landmarks: batch of landmarks of dim (n x 68 x 2). Where n is the batch size
:param expansion_factor: expands the bounding box by this factor. For example, a `expansion_factor` of 0.2 leads
to 20% increase in width and height of the boxes
:return: a batch of bounding boxes of dim (n x 4) where the second dim is (x1,y1,x2,y2)
"""
# Calc bounding box
x_y_min, _ = target_landmarks.reshape(-1, 68, 2).min(dim=1)
x_y_max, _ = target_landmarks.reshape(-1, 68, 2).max(dim=1)
# expanding the bounding box
expansion_factor /= 2
bb_expansion_x = (x_y_max[:, 0] - x_y_min[:, 0]) * expansion_factor
bb_expansion_y = (x_y_max[:, 1] - x_y_min[:, 1]) * expansion_factor
x_y_min[:, 0] -= bb_expansion_x
x_y_max[:, 0] += bb_expansion_x
x_y_min[:, 1] -= bb_expansion_y
x_y_max[:, 1] += bb_expansion_y
return torch.cat([x_y_min, x_y_max], dim=1)
def shuffle_lr(parts, pairs=None):
"""Shuffle the points left-right according to the axis of symmetry
of the object.
Arguments:
parts {torch.tensor} -- a 3D or 4D object containing the
heatmaps.
Keyword Arguments:
pairs {list of integers} -- [order of the flipped points] (default: {None})
"""
if pairs is None:
pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35,
34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41,
40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63,
62, 61, 60, 67, 66, 65]
if parts.ndimension() == 3:
parts = parts[pairs, ...]
else:
parts = parts[:, pairs, ...]
return parts
def flip(tensor, is_label=False):
"""Flip an image or a set of heatmaps left-right
Arguments:
tensor {numpy.array or torch.tensor} -- [the input image or heatmaps]
Keyword Arguments:
is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False})
"""
if not torch.is_tensor(tensor):
tensor = torch.from_numpy(tensor)
if is_label:
tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1)
else:
tensor = tensor.flip(tensor.ndimension() - 1)
return tensor
def get_image(image_or_path):
"""Reads an image from file or array/tensor and converts it to RGB (H,W,3).
Arguments:
tensor {Sstring, numpy.array or torch.tensor} -- [the input image or path to it]
"""
if isinstance(image_or_path, str):
try:
image = io.imread(image_or_path)
except IOError:
print("error opening file :: ", image_or_path)
return None
elif isinstance(image_or_path, torch.Tensor):
image = image_or_path.detach().cpu().numpy()
else:
image = image_or_path
if image.ndim == 2:
image = color.gray2rgb(image)
elif image.ndim == 4:
image = image[..., :3]
return image
# Pytorch load supports only pytorch models
def load_file_from_url(url, model_dir=None, progress=True, check_hash=False, file_name=None):
if model_dir is None:
hub_dir = get_dir()
model_dir = os.path.join(hub_dir, 'checkpoints')
try:
os.makedirs(model_dir)
except OSError as e:
if e.errno == errno.EEXIST:
# Directory already exists, ignore.
pass
else:
# Unexpected OSError, re-raise.
raise
parts = urlparse(url)
filename = os.path.basename(parts.path)
if file_name is not None:
filename = file_name
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = None
if check_hash:
r = HASH_REGEX.search(filename) # r is Optional[Match[str]]
hash_prefix = r.group(1) if r else None
download_url_to_file(url, cached_file, hash_prefix, progress=progress)
return cached_file