librarian-bot's picture
Librarian Bot: Add base_model information to model
a8ef478
|
raw
history blame
3.27 kB
metadata
language:
  - en
license: mit
datasets:
  - glue
pipeline_tag: zero-shot-classification
base_model: facebook/contriever-msmarco
model-index:
  - name: contriever-msmarco-mnli
    results: []

contriever-msmarco-mnli

This model is a fine-tuned version of facebook/contriever-msmarco on the glue dataset.

Model description

Unsupervised Dense Information Retrieval with Contrastive Learning. Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, Edouard Grave, arXiv 2021

How to use the model

With the zero-shot classification pipeline

The model can be loaded with the zero-shot-classification pipeline like so:

from transformers import pipeline
classifier = pipeline("zero-shot-classification",
                      model="mjwong/contriever-msmarco-mnli")

You can then use this pipeline to classify sequences into any of the class names you specify.

sequence_to_classify = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(sequence_to_classify, candidate_labels)

If more than one candidate label can be correct, pass multi_class=True to calculate each class independently:

candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
classifier(sequence_to_classify, candidate_labels, multi_class=True)

With manual PyTorch

The model can also be applied on NLI tasks like so:

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# device = "cuda:0" or "cpu"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_name = "mjwong/contriever-msmarco-mnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

premise = "But I thought you'd sworn off coffee."
hypothesis = "I thought that you vowed to drink more coffee."

input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device))
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)}
print(prediction)

Eval results

The model was evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.

Datasets mnli_dev_m mnli_dev_mm anli_test_r1 anli_test_r2 anli_test_r3
contriever-mnli 0.821 0.822 0.247 0.281 0.312
contriever-msmarco-mnli 0.820 0.819 0.244 0.296 0.306

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Framework versions

  • Transformers 4.28.1
  • Pytorch 1.12.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.12.1