metadata
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
base_model:
- OpenPipe/mistral-ft-optimized-1227
- Intel/neural-chat-7b-v3-3
- openchat/openchat-3.5-0106
- openaccess-ai-collective/DPOpenHermes-7B-v2
- mlabonne/NeuralHermes-2.5-Mistral-7B
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- Open-Orca/Mistral-7B-OpenOrca
model-index:
- name: Darewin-7B-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.63
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Darewin-7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 78.28
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Darewin-7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.01
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Darewin-7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 50.99
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Darewin-7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.95
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Darewin-7B-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 19.18
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Darewin-7B-v2
name: Open LLM Leaderboard
Darewin-7B-v2
Darewin-7B-v2 is a merge of the following models using LazyMergekit:
- OpenPipe/mistral-ft-optimized-1227
- Intel/neural-chat-7b-v3-3
- openchat/openchat-3.5-0106
- openaccess-ai-collective/DPOpenHermes-7B-v2
- mlabonne/NeuralHermes-2.5-Mistral-7B
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- Open-Orca/Mistral-7B-OpenOrca
🧩 Configuration
models:
- model: mistralai/Mistral-7B-Instruct-v0.2
# No parameters necessary for base model
- model: OpenPipe/mistral-ft-optimized-1227
parameters:
density: 0.6
weight: 0.25
- model: Intel/neural-chat-7b-v3-3
parameters:
density: 0.55
weight: 0.2
- model: openchat/openchat-3.5-0106
parameters:
density: 0.5
weight: 0.2
- model: openaccess-ai-collective/DPOpenHermes-7B-v2
parameters:
density: 0.45
weight: 0.1
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
parameters:
density: 0.4
weight: 0.1
- model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
parameters:
density: 0.4
weight: 0.1
- model: Open-Orca/Mistral-7B-OpenOrca
parameters:
density: 0.3
weight: 0.05
merge_method: dare_ties
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Darewin-7B-v2"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 56.34 |
AI2 Reasoning Challenge (25-Shot) | 62.63 |
HellaSwag (10-Shot) | 78.28 |
MMLU (5-Shot) | 53.01 |
TruthfulQA (0-shot) | 50.99 |
Winogrande (5-shot) | 73.95 |
GSM8k (5-shot) | 19.18 |