RuT5LargeSumGazeta

Model description

This is the model for abstractive summarization for Russian based on ai-forever/ruT5-large.

Intended uses & limitations

How to use

Here is how to use this model in PyTorch:

from transformers import AutoTokenizer, T5ForConditionalGeneration

model_name = "mlenjoyneer/rut5_large_sum_gazeta"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)

article_text = "..."

input_ids = tokenizer(
    [article_text],
    max_length=600,
    add_special_tokens=True,
    padding="max_length",
    truncation=True,
    return_tensors="pt"
)["input_ids"]

output_ids = model.generate(
    input_ids=input_ids,
    no_repeat_ngram_size=4
)[0]

summary = tokenizer.decode(output_ids, skip_special_tokens=True)
print(summary)

Training data

Evaluation results

Model R-1-f R-2-f R-L-f chrF BLEU Avg char length
IlyaGusev/mbart_ru_sum_gazeta 28.7 11.1 24.4 37.3 9.4 373
IlyaGusev/rut5_base_sum_gazeta 28.6 11.1 24.5 37.2 9.4 331
IlyaGusev/rugpt3medium_sum_gazeta 24.1 6.5 19.8 32.1 3.6 242
rut5-large_sum_gazeta 29.6 11.7 25.2 37.3 9.4 304
Downloads last month
23
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mlenjoyneer/rut5_large_sum_gazeta