Edit model card

distilrubert-tiny-cased-conversational-v1_single_finetuned_empathy_classifier

This model is a fine-tuned version of DeepPavlov/distilrubert-tiny-cased-conversational-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0183
  • Accuracy: 0.6218
  • F1: 0.6262
  • Precision: 0.6318
  • Recall: 0.6218

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0456 1.0 9 0.9718 0.4958 0.4197 0.6526 0.4958
0.9042 2.0 18 0.8920 0.5882 0.5769 0.5784 0.5882
0.7923 3.0 27 0.8427 0.6134 0.5861 0.5935 0.6134
0.7544 4.0 36 0.8400 0.6387 0.6234 0.6344 0.6387
0.6675 5.0 45 0.8410 0.6303 0.6095 0.6184 0.6303
0.6091 6.0 54 0.9095 0.6050 0.6041 0.6396 0.6050
0.6279 7.0 63 0.8596 0.6723 0.6692 0.6725 0.6723
0.4968 8.0 72 0.8725 0.6303 0.6274 0.6253 0.6303
0.4459 9.0 81 0.9120 0.6387 0.6395 0.6426 0.6387
0.4122 10.0 90 0.9478 0.6303 0.6262 0.6248 0.6303
0.3244 11.0 99 0.9746 0.6387 0.6375 0.6381 0.6387
0.3535 12.0 108 1.0183 0.6218 0.6262 0.6318 0.6218

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.